Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Clin Virol ; 174: 105720, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142019

RESUMO

Influenza C virus (ICV) is an orthomyxovirus related to influenza A and B, yet due to few commercial assays, epidemiologic studies may underestimate incidence of ICV infection and disease. We describe the epidemiology and characteristics of ICV within the New Vaccine Surveillance Network (NVSN), a Centers for Disease Control and Prevention (CDC)-led network that conducts population-based surveillance for pediatric acute respiratory illness (ARI). Nasal or/combined throat swabs were collected from emergency department (ED) or inpatient ARI cases, or healthy controls, between 12/05/2016-10/31/2019 and tested by molecular assays for ICV and other respiratory viruses. Parent surveys and chart review were used to analyze demographic and clinical characteristics of ICV+ children. Among 19,321 children tested for ICV, 115/17,668 (0.7 %) ARI cases and 8/1653 (0.5 %) healthy controls tested ICV+. Median age of ICV+ patients was 18 months and 88 (71.5 %) were ≤36 months. Among ICV+ ARI patients, 40 % (46/115) were enrolled in the ED, 60 % (69/115) were inpatients, with 15 admitted to intensive care. Most ICV+ ARI patients had fever (67.8 %), cough (94.8 %), or wheezing (60.9 %). Most (60.9 %) ARI cases had ≥1 co-detected viruses including rhinovirus, RSV, and adenovirus. In summary, ICV detection was rarely associated with ARI in children, and most ICV+ patients were ≤3 years old with co-detected respiratory viruses.


Assuntos
Gammainfluenzavirus , Influenza Humana , Infecções Respiratórias , Humanos , Pré-Escolar , Masculino , Lactente , Feminino , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Estados Unidos/epidemiologia , Criança , Gammainfluenzavirus/isolamento & purificação , Gammainfluenzavirus/genética , Adolescente , Coinfecção/virologia , Coinfecção/epidemiologia , Doença Aguda/epidemiologia
2.
Influenza Other Respir Viruses ; 18(6): e13345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923307

RESUMO

BACKGROUND: Influenza viruses can cause zoonotic infections that pose public health risks. Surveillance of influenza A and B viruses is conducted globally; however, information on influenza C and D viruses is limited. Longitudinal monitoring of influenza C virus in humans has been conducted in several countries, but there has been no long-term monitoring of influenza D virus in humans. The public health risks associated with the influenza D virus therefore remain unknown. METHODS: We established a duplex real-time RT-PCR to detect influenza C and D viruses and analyzed respiratory specimens collected from 2144 patients in Japan with respiratory diseases between January 2018 and March 2023. We isolated viruses and conducted hemagglutination inhibition tests to examine antigenicity and focus reduction assays to determine susceptibility to the cap-dependent endonuclease inhibitor baloxavir marboxil. RESULTS: We detected three influenza C viruses belonging to the C/Kanagawa- or C/Sao Paulo-lineages, which recently circulated globally. None of the specimens was positive for the influenza D virus. The C/Yokohama/1/2022 strain, isolated from the specimen with the highest viral RNA load and belonging to the C/Kanagawa-lineage, showed similar antigenicity to the reference C/Kanagawa-lineage strain and was susceptible to baloxavir. CONCLUSIONS: Our duplex real-time RT-PCR is useful for the simultaneous detection of influenza C and D viruses from the same specimen. Adding the influenza D virus to the monitoring of the influenza C virus would help in assessing the public health risks posed by this virus.


Assuntos
Dibenzotiepinas , Gammainfluenzavirus , Influenza Humana , Piridonas , Triazinas , Humanos , Japão/epidemiologia , Influenza Humana/virologia , Influenza Humana/epidemiologia , Triazinas/farmacologia , Masculino , Feminino , Gammainfluenzavirus/isolamento & purificação , Gammainfluenzavirus/genética , Pessoa de Meia-Idade , Adulto , Idoso , Antivirais/uso terapêutico , Antivirais/farmacologia , Morfolinas , Testes de Inibição da Hemaglutinação , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Thogotovirus/genética , Thogotovirus/isolamento & purificação , Thogotovirus/classificação , Reação em Cadeia da Polimerase em Tempo Real , Lactente , Idoso de 80 Anos ou mais
3.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587392

RESUMO

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Assuntos
Antivirais , Dibenzotiepinas , Triazinas , Antivirais/farmacologia , Humanos , Triazinas/farmacologia , Dibenzotiepinas/farmacologia , Gammainfluenzavirus/efeitos dos fármacos , Gammainfluenzavirus/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Células Madin Darby de Rim Canino , Cães , Ciclopropanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Testes de Neutralização , Piridinas/farmacologia
4.
J Clin Virol ; 162: 105429, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031609

RESUMO

BACKGROUND: Influenza C virus is a pathogen that causes acute respiratory illness in children. The clinical information about this virus is limited because of the small number of isolated viruses compared to influenza A or B viruses. METHODS: A total of 60 influenza C viruses were isolated by clinical tests using cell culture methods conducted in one hospital and one clinic during the 15 years from 2006 to 2020. These 60 cases were retrospectively analyzed by comparing outpatients and inpatients. Moreover, isolated viruses were analyzed for genomic changes during the study period. RESULTS: All were younger than 7 years, and 73% of inpatients (19 out of 26) were under 2 years of age. A significant difference was found in the frequency of pneumonia, accounting for 45% and 4% of inpatients and outpatients, respectively. Most of the viruses isolated from 2006 to 2012 belonged to the S/A sublineage of the C/Sao Paulo lineage, but three sublineage viruses, including the S/A sublineage with K190N mutation, S/V sublineage, and C/Kanagawa lineage, have cocirculated since 2014. Moreover, S/A sublineage viruses were undergoing reassortment since 2014, suggesting significant changes in the virus, both antigenically and genetically. Of the 10 strains from patients with pneumonia, 7 were in the S/A sublineage, which had circulated from 2006 to 2012. CONCLUSION: Infants under 2 years of age were more likely to be hospitalized with pneumonia. The genomic changes that occurred in 2014 were suggested to affect the ability of the virus to spread.


Assuntos
Gammainfluenzavirus , Influenza Humana , Lactente , Criança , Humanos , Gammainfluenzavirus/genética , Pacientes Ambulatoriais , Pacientes Internados , Japão/epidemiologia , Estudos Retrospectivos , Brasil , Influenza Humana/epidemiologia
5.
J Med Virol ; 95(1): e28201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210349

RESUMO

Sentinel surveillance of influenza-like illnesses revealed an increase in the cases of influenza C virus in children and adults in Austria, 2022, compared to previous years, following one season (2020/2021), wherein no influenza C virus was detected. Whole-genome sequencing revealed no obvious genetic basis for the increase. We propose that the reemergence is explained by waning immunity from lack of community exposure due to restrictions intended to limit severe acute respiratory syndrome coronavirus 2 spread in prior seasons, pending further investigation.


Assuntos
COVID-19 , Gammainfluenzavirus , Influenza Humana , Humanos , Adulto , Criança , Influenza Humana/epidemiologia , Gammainfluenzavirus/genética , Áustria/epidemiologia , Vigilância de Evento Sentinela , Estações do Ano
6.
J Biol Chem ; 298(3): 101727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157850

RESUMO

Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.


Assuntos
Gammainfluenzavirus , Influenza Humana , Proteínas da Matriz Viral , Microscopia Crioeletrônica , Humanos , Influenza Humana/virologia , Gammainfluenzavirus/genética , Gammainfluenzavirus/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus
7.
Sci Rep ; 12(1): 310, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013354

RESUMO

Influenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3-found in influenza C-had higher than expected amounts of sequence covariation.


Assuntos
Betainfluenzavirus/genética , Gammainfluenzavirus/genética , Vírus da Influenza A/genética , Estabilidade de RNA , RNA Viral/ultraestrutura , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Betainfluenzavirus/efeitos dos fármacos , Gammainfluenzavirus/efeitos dos fármacos , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA Viral/efeitos dos fármacos , RNA Viral/genética , Análise de Sequência de RNA , Relação Estrutura-Atividade
8.
J Virol ; 96(3): e0192821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787455

RESUMO

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Assuntos
Surtos de Doenças , Gammainfluenzavirus/classificação , Gammainfluenzavirus/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus Reordenados , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Hong Kong/epidemiologia , Humanos , Modelos Moleculares , Mutação , Filogenia , Vigilância em Saúde Pública , Análise de Sequência de DNA , Relação Estrutura-Atividade , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
9.
Viruses ; 13(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802440

RESUMO

The antigenicity of the hemagglutinin esterase (HE) glycoprotein of influenza C virus is known to be stable; however, information about residues related to antigenic changes has not yet been fully acquired. Using selection with anti-HE monoclonal antibodies, we previously obtained some escape mutants and identified four antigenic sites, namely, A-1, A-2, A-3, and Y-1. To confirm whether the residues identified as the neutralizing epitope possibly relate to the antigenic drift, we analyzed the growth kinetics of these mutants. The results showed that some viruses with mutations in antigenic site A-1 were able to replicate to titers comparable to that of the wild-type, while others showed reduced titers. The mutants possessing substitutions in the A-2 or A-3 site replicated as efficiently as the wild-type virus. Although the mutant containing a deletion at positions 192 to 195 in the Y-1 site showed lower titers than the wild-type virus, it was confirmed that this region in the 190-loop on the top side of the HE protein is not essential for viral propagation. Then, we revealed that antigenic changes due to substitutions in the A-1, A-3, and/or Y-1 site had occurred in nature in Japan for the past 30 years. These results suggest that some residues (i.e., 125, 176, 192) in the A-1 site, residue 198 in the A-3 site, and residue 190 in the Y-1 site are likely to mediate antigenic drift while maintaining replicative ability.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais , Gammainfluenzavirus , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Cães , Gammainfluenzavirus/genética , Gammainfluenzavirus/imunologia , Células Madin Darby de Rim Canino
10.
J Clin Virol ; 133: 104662, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137705

RESUMO

BACKGROUND: Influenza C virus causes mild respiratory diseases in humans. Previous studies suggested that the predominant hemagglutinin-esterase gene lineage circulating in children might be selected among the adult population, yet the prevalence of influenza C virus in adults has not been described. OBJECTIVES: To evaluate the frequency of influenza C virus infection in adults. STUDY DESIGN: We performed hemagglutination inhibition assays of serum samples collected at periodic occupational medical checkups from employees of a hospital. A total of 679 serum samples were collected from 57 subjects who participated in biannual medical checkups between 2011 and 2016 as part of a longitudinal series. Titers of antibodies against the C/Kanagawa and C/Sao Paulo lineage viruses were detected. RESULTS: Ten serum sample pairs from among the 57 subjects showed at least a four-fold increase in influenza C antibody titers. Samples from three subjects exhibited antibody titer increases for both the C/Kanagawa and C/Sao Paulo lineages, four subjects showed an increased titer against the C/Sao Paulo lineage, and three subjects showed an increased titer against the C/Kanagawa lineage. Half of the antibody titer increases for the C/Kanagawa lineage were detected in May 2014, while the increases for the C/Sao Paulo lineage were detected from 2011 to 2016. CONCLUSION: The 5-year influenza C virus infection rate was estimated at 17.5 %. There were antibodies that cross-reacted with the C/Sao Paulo and C/Kanagawa lineages. The results suggest that C/Sao Paulo was the main lineage in the adult population of this area, with cocirculation of the C/Kanagawa lineage.


Assuntos
Gammainfluenzavirus , Influenza Humana , Adulto , Anticorpos Antivirais , Brasil , Criança , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/epidemiologia , Gammainfluenzavirus/genética , Japão/epidemiologia
11.
Nature ; 587(7835): 638-643, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208942

RESUMO

Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.


Assuntos
Microscopia Crioeletrônica , Gammainfluenzavirus/enzimologia , Interações Hospedeiro-Patógeno , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Animais , Galinhas/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Modelos Moleculares , Proteínas Nucleares/ultraestrutura , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , RNA Viral/biossíntese , RNA Viral/genética , Proteínas de Ligação a RNA/ultraestrutura , RNA Polimerase Dependente de RNA/ultraestrutura , Células Sf9
12.
PLoS One ; 15(9): e0238615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915821

RESUMO

Influenza, which is an acute respiratory disease caused by the influenza virus, represents a worldwide public health and economic problem owing to the significant morbidity and mortality caused by its seasonal epidemics and pandemics. Sensitive and convenient methodologies for the detection of influenza viruses are important for clinical care and infection control as well as epidemiological investigations. Here, we developed a multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) with quencher/fluorescence oligonucleotides connected by a 5' backward loop (LF or LB) primer for the detection of two subtypes of influenza viruses: Influenza A (A/H1 and A/H3) and influenza B. The detection limits of the multiplex RT-LAMP assay were 103 copies and 102 copies of RNA for influenza A and influenza B, respectively. The sensitivities of the multiplex influenza A/B/IC RT-LAMP assay were 94.62% and 97.50% for influenza A and influenza B clinical samples, respectively. The specificities of the multiplex influenza A/B/IC RT-LAMP assay were 100% for influenza A, influenza B, and healthy clinical samples. In addition, the multiplex influenza A/B/IC RT-LAMP assay had no cross-reactivity with other respiratory viruses.


Assuntos
Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular , Infecções por Orthomyxoviridae/diagnóstico , Orthomyxoviridae/isolamento & purificação , Animais , Epidemias , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/genética , Influenza Humana/virologia , Gammainfluenzavirus/genética , Gammainfluenzavirus/isolamento & purificação , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Pandemias
13.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817211

RESUMO

In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.


Assuntos
Surtos de Doenças , Gammainfluenzavirus/genética , Hemaglutininas Virais/genética , Influenza Humana/epidemiologia , Mutação , Proteínas Virais de Fusão/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Expressão Gênica , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hong Kong/epidemiologia , Humanos , Lactente , Influenza Humana/patologia , Influenza Humana/virologia , Gammainfluenzavirus/enzimologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Epidemiologia Molecular , Filogenia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estudos Retrospectivos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
14.
Virology ; 545: 16-23, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32174455

RESUMO

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other mammalian hosts. By using traditional hemagglutination assay coupled with sialoglycan microarray (SGM) platform and functional assays, we demonstrated that IDV is more efficient in recognizing both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) than influenza C virus (ICV), a ubiquitous human pathogen. ICV seems to strongly prefer Neu5,9Ac2 over Neu5Gc9Ac. Since Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen in the group at the C5 position, our results reveal that the hydroxyl group in Neu5Gc9Ac plays a critical role in determining receptor binding specificity, which as a result may discriminate IDV from ICV in communicating with 9-O-acetylated SAs. These findings shall provide a framework for further investigation towards better understanding of how newly discovered multiple-species-infecting IDV exploits natural 9-O-acetylated SA variations to expand its host range.


Assuntos
Gammainfluenzavirus/metabolismo , Influenza Humana/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Thogotovirus/metabolismo , Humanos , Influenza Humana/virologia , Gammainfluenzavirus/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Receptores Virais/química , Ácidos Siálicos/metabolismo , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/isolamento & purificação
15.
Infect Genet Evol ; 81: 104269, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32135195

RESUMO

Influenza C virus is a pathogen that causes acute respiratory illness in children and results in the hospitalization of infants. The antigenicity of the hemagglutinin esterase (HE) glycoprotein is highly stable, and it is not yet known whether antigenic changes contribute to the worldwide transmission and the occurrence of outbreaks of influenza C virus. Here, we performed antigenic analysis of 84 influenza C viruses isolated in Yamagata, Japan, during a 4-year period from 2015 to 2018 and analyzed sequence data for strains of the virus from Japan and many other parts of the world. Antigenic and phylogenetic analyses revealed that 83 strains belonged to the C/Sao Paulo lineage, and two sublineage strains, the Aichi99 sublineage and Victoria2012 sublineage, cocirculated between 2016 and 2018. Aichi99 sublineage strains exhibiting decreased reactivity with the monoclonal antibody YA3 became predominant after 2016, and these strains possessed the K190N mutation. Residue 190 is located in the 190-loop on the top side of the HE protein within a region that is known to show variation that does not impair the biological activity of the protein. The Aichi99 sublineage strains possessing the K190N mutation were detected after 2012 in Europe, Australia, the USA, and Asia as well as Japan. These observations suggest that antigenic variants with K190N mutations have circulated extensively around the world and caused outbreaks in Japan between 2016 and 2018. Our study indicated that the 190-loop is an important antigenic region, and the results suggested that changes in the 190-loop have contributed to the extensive transmission of the virus.


Assuntos
Variação Antigênica/genética , Antígenos Virais/genética , Gammainfluenzavirus/genética , Influenza Humana/virologia , Sequência de Aminoácidos , Ásia , Austrália , Surtos de Doenças , Europa (Continente) , Testes de Inibição da Hemaglutinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas Virais/genética , Humanos , Japão , Filogenia , Análise de Sequência de DNA/métodos , Proteínas Virais de Fusão/genética
16.
Viruses ; 12(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941041

RESUMO

Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7-10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV.


Assuntos
Gammainfluenzavirus/patogenicidade , Influenza Humana/epidemiologia , Criança , Humanos , Influenza Humana/virologia , Gammainfluenzavirus/genética , Sistema Respiratório/virologia , Estudos Soroepidemiológicos
17.
J Med Virol ; 92(2): 161-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31498448

RESUMO

Unlike influenza A and B viruses that infect humans and cause severe diseases in seasonal epidemics, influenza C virus (ICV) is a ubiquitous childhood pathogen typically causing mild respiratory symptoms. ICV infections are rarely diagnosed and less research has been performed on it despite the virus being capable of causing severe disease in infants. Here we report on the isolation of a human ICV from a child with acute respiratory disease, provisionally designated C/Victoria/2/2012 (C/Vic). The full-length genome sequence and phylogenetic analysis revealed that the hemagglutinin-esterase-fusion (HEF) gene of C/Vic was derived from C/Sao Paulo lineage, while its PB2 and P3 genes evolved separately from all characterized historical ICV isolates. Furthermore, antigenic analysis using the hemagglutination inhibition (HI) assay found that 1947 C/Taylor virus (C/Taylor lineage) was antigenically more divergent from1966 C/Johannesburg (C/Aichi lineage) than from 2012 C/Vic. Structure modeling of the HEF protein identified two mutations in the 170-loop of the HEF protein around the receptor-binding pocket as a possible antigenic determinant responsible for the discrepant HI results. Taken together, results of our studies reveal novel insights into the genetic and antigenic evolution of ICV and provide a framework for further investigation of its molecular determinants of antigenic property and replication.


Assuntos
Antígenos Virais/genética , Gammainfluenzavirus/genética , Gammainfluenzavirus/imunologia , Influenza Humana/virologia , Animais , Criança , Cães , Regulação Viral da Expressão Gênica , Genoma Viral , Humanos , Células Madin Darby de Rim Canino , Modelos Moleculares , Filogenia , Conformação Proteica , RNA Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814281

RESUMO

The influenza C virus (ICV) is a human-pathogenic agent, and the infections are frequently identified in children. Compared to influenza A and B viruses, the nucleoprotein of ICV (NPC) has an extended C-terminal region of which the functional significance is ill defined. We observed that the nuclear localization signals (NLSs) found on the nucleoproteins of influenza A and B virus subtypes are absent at corresponding positions on ICV. Instead, we found that a long bipartite nuclear localization signal resides at the extended C-terminal region, spanning from R513 to K549. Our experimental data determined that the KKMK motif within this region plays important roles in both nuclear import and polymerase activity. Similar to the influenza A viruses, NPC also binds to multiple human importin α isoforms. Taken together, our results enhance the understanding of the virus-host interaction of the influenza C virus.IMPORTANCE As a member of the Orthomyxoviridae family, the polymerase complex of the influenza C virus structurally resembles its influenza A and influenza B virus counterparts, but the nucleoprotein differs by possessing an extra C-terminal region. We have characterized this region in view of nuclear import and interaction with the importin α protein family. Our results demonstrate the functional significance of a previously uncharacterized region on Orthomyxoviridae nucleoprotein (NP). Based on this work, we propose that importin α binding to influenza C virus NP is regulated by a long bipartite nuclear localization signal. Since the sequence of influenza D virus NP shares high homology to that of the influenza C virus, this work will also shed light on how influenza D virus NP functions.


Assuntos
Núcleo Celular/metabolismo , Gammainfluenzavirus/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/virologia , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Domínios Proteicos , Ribonucleoproteínas/genética , Proteínas do Core Viral/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
19.
Emerg Infect Dis ; 25(3): 607-609, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789339

RESUMO

We report 3 cases of influenza C virus in children hospitalized with severe acute respiratory infection in Cameroon. Two of these case-patients had grave clinical manifestations, but all 3 recovered. The lack of specific antiviral drugs for influenza C virus highlights the need to identify and describe cases involving this virus.


Assuntos
Gammainfluenzavirus/genética , Hospitalização , Influenza Humana/epidemiologia , Influenza Humana/virologia , Camarões/epidemiologia , Pré-Escolar , Genes Virais , Genoma Viral , Humanos , Lactente , Influenza Humana/diagnóstico , Gammainfluenzavirus/classificação , Filogenia , Vigilância da População
20.
Viruses ; 11(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791465

RESUMO

Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.


Assuntos
Códon , Evolução Molecular , Gammainfluenzavirus/genética , Hemaglutininas Virais/genética , Proteínas Virais de Fusão/genética , Animais , Bovinos , Genoma Viral , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Gammainfluenzavirus/enzimologia , Filogenia , Seleção Genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA