Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Vet Res ; 55(1): 113, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304917

RESUMO

Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.


Assuntos
Gastroenterite Suína Transmissível , Muco , Vírus da Gastroenterite Transmissível , Animais , Vírus da Gastroenterite Transmissível/fisiologia , Suínos , Gastroenterite Suína Transmissível/virologia , Muco/virologia , Mucosa Intestinal/virologia , Fatores Etários
2.
Virulence ; 15(1): 2397492, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39239724

RESUMO

Coronavirus nonstructural protein 2 (Nsp2) is regarded as a virulence determinant and plays a critical role in virus replication, and innate immunity. Screening and identifying host cell proteins that interact with viral proteins is an effective way to reveal the functions of viral proteins. In this study, the host proteins that interacted with transmissible gastroenteritis virus (TGEV) Nsp2 were identified using immunoprecipitation combined with LC-MS/MS. 77 host cell proteins were identified as putative Nsp2 interaction host cell proteins and a protein-protein interaction (PPI) was constructed. The identified proteins were found to be associated with various subcellular locations and functional categories through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. It is hypothesized that the host cell proteins interacting with TGEV Nsp2 are mainly involved in the formation of the cytoplasmic translation initiation complex, mRNA binding, ribosomes, and proteasomes. Among these, the ATP5B, a core subunit of the mitochondrial ATP synthase was further studied. The Coimmunoprecipitation (Co-IP) and indirect immunofluorescence (IFA) results confirmed that TGEV Nsp2 interacted with ATP5B. Furthermore, the downregulation of ATP5B expression was found to promote TGEV replication, suggesting that ATP5B might function as a negative regulator of TGEV replication. Collectively, our results offer additional insights into the functions of Nsp2 and provide a novel antiviral target against TGEV.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Vírus da Gastroenterite Transmissível , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Gastroenterite Transmissível/genética , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Suínos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Humanos , Interações Hospedeiro-Patógeno , Gastroenterite Suína Transmissível/virologia , Gastroenterite Suína Transmissível/genética , Linhagem Celular , Imunoprecipitação , Espectrometria de Massas em Tandem
3.
Arch Virol ; 169(9): 183, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164596

RESUMO

Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.


Assuntos
Gastroenterite Suína Transmissível , Genoma Viral , Filogenia , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vietnã , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Gastroenterite Transmissível/classificação , Gastroenterite Suína Transmissível/virologia , Genoma Viral/genética , Fezes/virologia , Sequenciamento Completo do Genoma , Doenças dos Suínos/virologia , Sequência de Aminoácidos
4.
Microb Pathog ; 195: 106885, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182857

RESUMO

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) are three clinically common coronaviruses causing diarrhea in pigs, with indistinguishable clinical signs and pathological changes. Rapid, portable and reliable differential diagnosis of these three pathogens is crucial for the prompt implementation of appropriate control measures. In this study, we developed a triplex nucleic acid assay that combines reverse transcription recombinase-aided amplification (RT-RAA) with lateral flow assay (LFA) by targeting the most conserved genomic region in the ORF1b genes of PEDV, PDCoV and TGEV. The entire detection process of the triplex RT-RAA-LFA assay included 10-min nucleic acid amplification at 42 °C and 5-min visual LFA readout at room temperature. The assay could specifically differentiate PEDV, PDCoV and TGEV without cross-reaction with any other major swine pathogens. Sensitivity analysis showed that the triplex RT-RAA-LFA assay was able to detect the viral RNA extracted from the spiked fecal samples with the minimum of 1 × 100 TCID50 PEDV, 1 × 104 TCID50 PDCoV, and 1 × 102 TCID50 TGEV per reaction, respectively. Further analysis showed that the 95 % detection limit (LOD) of triplex RT-RAA-LFA for PEDV, PDCoV, and TGEV were 22, 478, and 205 copies of recombinant plasmids per reaction, respectively. The diagnostic performance of triplex RT-RAA-LFA was compared with that of PEDV, PDCoV and TGEV respective commercial real-time RT-PCR kits by testing 114 clinical rectal swab samples in parallel. The total diagnostic coincidence rates of triplex RT-RAA-LFA with real-time RT-PCR kits of PEDV, PDCoV and TGEV were 100 %, 99.1 % and 99.1 %, respectively, and their Kappa values were 1.00, 0.958 and 0.936, respectively. Collectively, the RT-RAA-LFA assay is a powerful tool for the rapid, portable, visual, and synchronous differential diagnosis of PEDV, PDCoV, and TGEV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Fezes , Técnicas de Amplificação de Ácido Nucleico , Vírus da Diarreia Epidêmica Suína , RNA Viral , Sensibilidade e Especificidade , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Gastroenterite Transmissível/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Fezes/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diagnóstico Diferencial , Deltacoronavirus/isolamento & purificação , Deltacoronavirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Técnicas de Diagnóstico Molecular/métodos , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico
5.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095890

RESUMO

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Assuntos
Antivirais , Gastroenterite Suína Transmissível , Tapsigargina , Vírus da Gastroenterite Transmissível , Animais , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Vírus da Gastroenterite Transmissível/fisiologia , Suínos , Gastroenterite Suína Transmissível/tratamento farmacológico , Gastroenterite Suína Transmissível/virologia , Antivirais/farmacologia , Tapsigargina/farmacologia , Linhagem Celular , Replicação Viral/efeitos dos fármacos
6.
PLoS One ; 19(7): e0306532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968319

RESUMO

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Estudos Retrospectivos , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Gastroenterite Suína Transmissível/epidemiologia , Reação em Cadeia da Polimerase/métodos , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Estados Unidos/epidemiologia
7.
J Virol ; 98(6): e0046124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780247

RESUMO

Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE: Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.


Assuntos
Gastroenterite Suína Transmissível , Glicólise , Inflamação , Organoides , Vírus da Gastroenterite Transmissível , Animais , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Gastroenterite Suína Transmissível/virologia , Gastroenterite Suína Transmissível/metabolismo , Gastroenterite Suína Transmissível/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/metabolismo , Inflamação/virologia , Intestinos/virologia , Intestinos/patologia , NF-kappa B/metabolismo , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais , Suínos , Vírus da Gastroenterite Transmissível/fisiologia
8.
J Gen Virol ; 105(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38814698

RESUMO

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Floretina , Vírus da Gastroenterite Transmissível , Replicação Viral , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Animais , Suínos , Floretina/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Antivirais/farmacologia , Gastroenterite Suína Transmissível/tratamento farmacológico , Gastroenterite Suína Transmissível/virologia , Citocinas/metabolismo , Citocinas/genética , Internalização do Vírus/efeitos dos fármacos
9.
Virology ; 595: 110072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599031

RESUMO

Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.


Assuntos
Genoma Viral , Filogenia , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/classificação , Europa (Continente) , Doenças dos Suínos/virologia , Estados Unidos , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Coronavirus/classificação , Gastroenterite Suína Transmissível/virologia
10.
Microb Pathog ; 191: 106646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631414

RESUMO

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Assuntos
Vírus da Diarreia Epidêmica Suína , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus , Sensibilidade e Especificidade , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/classificação , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus/classificação , Fezes/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia
11.
Microb Pathog ; 183: 106320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625663

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets and poses a huge threat and loss to the pig industry in China. METHOD: We estimated the prevalence of TGEV in Chinese pig animals from 1983 to 2022 by screening 36 papers on TGEV investigations in China from databases such as China Knowledge Network (CNKI), Wanfang Database, Science and Technology Journal Repository (VIP), PubMed, and ScienceDirect, excluding duplicate literature and other host studies according to the exclusion criteria we developed, and excluding literature with incomplete data to extract information from studies that could estimate the prevalence of TGEV infection in pigs in mainland China. RESULTS: A total of 36 studies (including data from 50,403 pigs) met our evaluation criteria. The overall estimated prevalence of TGEV infection in pigs in China is 10% (3887/50403), and the prevalence of TGEV in northeast China is 38% (2582/3078700) is significantly higher than the rest of China. The prevalence of TGEV infection was related to the sampling season and region. CONCLUSION: The results of the study show that the prevalence of TGEV is clearly seasonal and regional. Therefore, further research and monitoring of the prevalence of TGEV infection and the development of control programs based on different conditions are essential. In addition, effective and robust regulatory measures should be taken in colder regions to prevent the spread and transmission of TGEV in pigs.


Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Animais , China/epidemiologia , Diarreia , Gastroenterite/epidemiologia , Gastroenterite/veterinária , Prevalência , Suínos , Gastroenterite Suína Transmissível/epidemiologia , Gastroenterite Suína Transmissível/virologia
12.
Front Immunol ; 13: 734171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173714

RESUMO

Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1ß, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF, TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF-κB signaling pathway.


Assuntos
Gastroenterite Suína Transmissível/tratamento farmacológico , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Vírus da Gastroenterite Transmissível/patogenicidade , Tretinoína/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Regulação para Baixo , Gastroenterite Suína Transmissível/metabolismo , Gastroenterite Suína Transmissível/virologia , NF-kappa B/metabolismo , Fosforilação , Suínos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS Pathog ; 17(12): e1010113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871328

RESUMO

Emerging coronaviruses (CoVs) pose a severe threat to human and animal health worldwide. To identify host factors required for CoV infection, we used α-CoV transmissible gastroenteritis virus (TGEV) as a model for genome-scale CRISPR knockout (KO) screening. Transmembrane protein 41B (TMEM41B) was found to be a bona fide host factor involved in infection by CoV and three additional virus families. We found that TMEM41B is critical for the internalization and early-stage replication of TGEV. Notably, our results also showed that cells lacking TMEM41B are unable to form the double-membrane vesicles necessary for TGEV replication, indicating that TMEM41B contributes to the formation of CoV replication organelles. Lastly, our data from a mouse infection model showed that the KO of this factor can strongly inhibit viral infection and delay the progression of a CoV disease. Our study revealed that targeting TMEM41B is a highly promising approach for the development of broad-spectrum anti-viral therapeutics.


Assuntos
Sistemas CRISPR-Cas , Gastroenterite Suína Transmissível/virologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/fisiologia , Organelas/virologia , Vírus da Gastroenterite Transmissível/fisiologia , Replicação Viral , Animais , Gastroenterite Suína Transmissível/genética , Gastroenterite Suína Transmissível/transmissão , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Suínos
14.
Vet Microbiol ; 261: 109189, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375914

RESUMO

Transmissible gastroenteritis (TGE) is an acute viral disease and characterized as severe acute inflammation response that leads to diarrhea, vomiting, and high lethality of piglets. Transmissible gastroenteritis virus (TGEV), a member of coronavirus, is the pathogen of TGE. We previously found NF-κB pathway was activated and 65 miRNAs were changed in response to inflammation caused by TGEV in cell line porcine intestinal epithelial cells-jejunum 2 (IPEC-J2). Bioinformatics results showed that these altered miRNAs were relevant to inflammation. In this study, the candidate targets of differentially expressed (DE) miRNAs were predicted and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Based on the results of KEGG analysis, miR-885-3p might participate in regulating activation of NF-κB pathway and TNF pathway. To study the function of miR-885-3p, miR-885-3p mimics and inhibitors were artificially synthesized and respectively used for overexpression and silence of miR-885-3p in cells. Our results showed that miR-885-3p inhibited NF-κB signaling pathway and tumor necrosis factor-α (TNF-α) production. B-cell CLL/lymphoma 10 (Bcl-10) was identified as the target of miR-885-3p, and promoted NF-κB pathway activation and TNF-α production. It was found that TGEV open reading frame 3b (TGEV-ORF3b) suppressed Bcl-10 expression, activation of NF-κB pathway, and TNF-α production by uniquely up-regulated miR-885-3p expression. Overall, the results indicated that TGEV-ORF3b counteracted NF-κB pathway and TNF-α via regulating miR-885-3p and Bcl-10.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Gastroenterite Suína Transmissível/virologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Vírus da Gastroenterite Transmissível/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína 10 de Linfoma CCL de Células B/genética , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , MicroRNAs/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Suínos , Regulação para Cima , Proteínas Virais
15.
Arch Virol ; 166(3): 935-941, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492525

RESUMO

Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.


Assuntos
Deltacoronavirus/crescimento & desenvolvimento , Gastroenterite Suína Transmissível/virologia , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Vírus da Gastroenterite Transmissível/crescimento & desenvolvimento , Replicação Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Suscetibilidade a Doenças , Técnica Indireta de Fluorescência para Anticorpo , Intestino Delgado/virologia , Células LLC-PK1 , Suínos , Doenças dos Suínos/virologia , Células Vero
16.
Virology ; 552: 43-51, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059319

RESUMO

This study focused on intestinal restitution including phenotype switching of absorptive enterocytes and the abundance of different enterocyte subtypes in weaned pigs after porcine epidemic diarrhea virus (PEDV) infection. At 10 days post-PEDV-inoculation, the ratio of villus height to crypt depth in both jejunum and ileum had restored, and the PEDV antigen was not detectable. However, enterocytes at the villus tips revealed epithelial-mesenchymal transition (EMT) in the jejunum in which E-cadherin expression decreased while expression of N-cadherin, vimentin, and Snail increased. Additionally, there was reduced expression of actin in microvilli and Zonula occludens-1 (ZO-1) in tight junctions. Moreover, the protein concentration of transforming growth factor ß1 (TGFß1), which mediates EMT and cytoskeleton alteration, was increased. We also found a decreased number of Peyer's patch M cells in the ileum. These results reveal incomplete restitution of enterocytes in the jejunum and potentially impaired immune surveillance in the ileum after PEDV infection.


Assuntos
Infecções por Coronavirus/veterinária , Enterócitos/patologia , Transição Epitelial-Mesenquimal , Gastroenterite Suína Transmissível/patologia , Nódulos Linfáticos Agregados/patologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Animais , Caderinas/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Gastroenterite Suína Transmissível/imunologia , Gastroenterite Suína Transmissível/virologia , Íleo/imunologia , Íleo/patologia , Mucosa Intestinal/patologia , Jejuno/imunologia , Jejuno/patologia , Microvilosidades/patologia , Suínos , Junções Íntimas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Desmame
17.
Vet Microbiol ; 252: 108930, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33290999

RESUMO

Our previous research obtained purified recombinant porcine interferon-α (rPoIFN-α) containing thioredoxin (Trx) fusion tag in E. coli Rosetta (DE3). Here, we evaluate the efficacy of this rPoIFN-α to prevent piglets from the infection of the transmissible gastroenteritis virus (TGEV) attack. In this experiment, twenty-five TGEV-seronegative piglets were randomly divided into five groups. Group 1 was positive control and only challenged with TGEV; Pigs in groups 2-4 were pretreated with 2 × 10(7)IU/pig, 2 × 10(6)IU/pig, and 2 × 10(5)IU/pig rPoIFN-α before TGEV challenge. The fifth group is a negative control group. The animals of this group are pretreated only with Trx protein-containing PBS solution without TGEV challenge. After 48 h of rPoIFN-α pretreatment, the pigs in groups 1-4 were challenged by TGEV, and the pigs in group 5 were administered with PBS. The surveillance results show that Pigs pre-treated with 2 × 10 (7) IU/pig rPoIFN-α are fully aligned with the violent TGEV attack. Pigs pretreated with 2 × 10 (6) IU/pig rPoIFN-α are partially aligned with the violent TGEV attack. Though piglets pretreated with 2 × 10(6) IU/pig or 2 × 10(5)IU/pig rPoIFN-α cannot be adapted to the challenge of TGEV. However, the use of this dose of rPoIFN-α could put off the clinical signs of pigs than the positive control group of the above. These results indicate that rPoIFN-α can protect pigs from the infection of potential TGEV or delay the appearance of clinical symptoms, and its effect is dose-dependent.


Assuntos
Escherichia coli/genética , Gastroenterite Suína Transmissível/prevenção & controle , Interferon-alfa/metabolismo , Vírus da Gastroenterite Transmissível/imunologia , Animais , Escherichia coli/isolamento & purificação , Gastroenterite Suína Transmissível/virologia , Interferon-alfa/genética , Proteínas Recombinantes , Suínos
18.
Virus Genes ; 56(6): 687-695, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32944812

RESUMO

Porcine deltacoronavirus (PDCoV) has been recently identified as an emerging enteropathogenic coronavirus that mainly infects newborn piglets and causes enteritis, diarrhea and high mortality. Although coronavirus N proteins have multifarious activities, the subcellular localization of the PDCoV N protein is still unknown. Here, we produced mouse monoclonal antibodies against the PDCoV N protein. Experiments using anti-haemagglutinin antibodies and these monoclonal antibodies revealed that the PDCoV N protein is shuttled into the nucleolus in both ectopic PDCoV N-expressing cells and PDCoV-infected cells. The results of deletion mutagenesis experiments demonstrated that the predicted nucleolar localization signal at amino acids 295-318 is critical for nucleolar localization. Cumulatively, our study yielded a monoclonal antibody against the PDCoV N protein and revealed a mechanism by which the PDCoV N protein translocated into the nucleolus. The tolls and findings from this work will facilitate further investigations on the functions of the PDCoV N protein.


Assuntos
Nucléolo Celular/genética , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Deltacoronavirus/genética , Gastroenterite Suína Transmissível/virologia , Interações Hospedeiro-Patógeno/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/química , Linhagem Celular , Nucléolo Celular/metabolismo , Infecções por Coronavirus/patologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Deltacoronavirus/crescimento & desenvolvimento , Deltacoronavirus/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Gastroenterite Suína Transmissível/patologia , Expressão Gênica , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Rim/patologia , Rim/virologia , Camundongos , Sinais de Localização Nuclear , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Suínos
19.
Elife ; 92020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876563

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) and transmissible gastroenteritis virus (TGEV) are two highly infectious and lethal viruses causing major economic losses to pig production. Here, we report generation of double-gene-knockout (DKO) pigs harboring edited knockout alleles for known receptor proteins CD163 and pAPN and show that DKO pigs are completely resistant to genotype 2 PRRSV and TGEV. We found no differences in meat-production or reproductive-performance traits between wild-type and DKO pigs, but detected increased iron in DKO muscle. Additional infection challenge experiments showed that DKO pigs exhibited decreased susceptibility to porcine deltacoronavirus (PDCoV), thus offering unprecedented in vivo evidence of pAPN as one of PDCoV receptors. Beyond showing that multiple gene edits can be combined in a livestock animal to achieve simultaneous resistance to two major viruses, our study introduces a valuable model for investigating infection mechanisms of porcine pathogenic viruses that exploit pAPN or CD163 for entry.


Pig epidemics are the biggest threat to the pork industry. In 2019 alone, hundreds of billions of dollars worldwide were lost due to various pig diseases, many of them caused by viruses. The porcine reproductive and respiratory virus (PRRS virus for short), for instance, leads to reproductive disorders such as stillbirths and premature labor. Two coronaviruses ­ the transmissible gastroenteritis virus (or TGEV) and the porcine delta coronavirus ­ cause deadly diarrhea and could potentially cross over into humans. Unfortunately, there are still no safe and effective methods to prevent or control these pig illnesses, but growing disease-resistant pigs could reduce both financial and animal losses. Traditionally, breeding pigs to have a particular trait is a slow process that can take many years. But with gene editing technology, it is possible to change or remove specific genes in a single generation of animals. When viruses infect a host, they use certain proteins on the surface of the host's cells to find their inside: the PRRS virus relies a protein called CD163, and TGEV uses pAPN. Xu, Zhou, Mu et al. used gene editing technology to delete the genes that encode the CD163 and pAPN proteins in pigs. When the animals were infected with PRRS virus or TGEV, the non-edited pigs got sick but the gene-edited animals remained healthy. Unexpectedly, pigs without CD163 and pAPN also coped better with porcine delta coronavirus infections, suggesting that CD163 and pAPN may also help this coronavirus infect cells. Finally, the gene-edited pigs reproduced and produced meat as well as the control pigs. These experiments show that gene editing can be a powerful technology for producing animals with desirable traits. The gene-edited pigs also provide new knowledge about how porcine viruses infect pigs, and may offer a starting point to breed disease-resistant animals on a larger scale.


Assuntos
Antígenos CD13/deficiência , Infecções por Coronavirus/prevenção & controle , Coronavirus/patogenicidade , Gastroenterite Suína Transmissível/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Receptores de Superfície Celular/deficiência , Vírus da Gastroenterite Transmissível/patogenicidade , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Composição Corporal , Antígenos CD13/genética , Antígenos CD13/imunologia , Coronavirus/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Suscetibilidade a Doenças , Gastroenterite Suína Transmissível/genética , Gastroenterite Suína Transmissível/imunologia , Gastroenterite Suína Transmissível/virologia , Técnicas de Silenciamento de Genes , Interações entre Hospedeiro e Microrganismos , Indústria de Embalagem de Carne , Fenótipo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Sus scrofa/genética , Suínos , Vírus da Gastroenterite Transmissível/imunologia , Aumento de Peso
20.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796075

RESUMO

The intestinal organoid culture system is a pathbreaking working model for investigating pathogen-host interactions in the intestines. However, due to the limitations of the first generation of intestinal organoids, basal-out structure and growth in Matrigel, most pathogens can rarely attach to the apical membrane directly and hardly initiate infection. In this study, we first developed a next-generation porcine intestinal organoid culture system, characterized by an apical membrane on the surface, called apical-out. To investigate the infectivity and antiviral immune responses of this apical-out porcine intestinal organoid, a swine enteric virus, transmissible gastroenteritis virus (TGEV), was employed to inoculate the culture system. Both reverse transcription-quantitative PCR (RT-qPCR) and immunofluorescence assay (IFA) analysis demonstrated that TGEV replicated in the apical-out porcine intestinal organoid culture system. Additionally, our results illustrated that TGEV infection significantly upregulated the expression levels of alpha interferon (IFN-α), IFN-λ1, interferon-stimulated gene 15 (ISG15), ISG58, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) in this culture system. Hence, we successfully developed a porcine intestinal apical-out organoid culture system, which will facilitate the investigation of pathogen-host interactions in pig intestines.IMPORTANCE Intestinal organoids are a newly developed culture system for investigating pathogen-host interactions. Intestinal organoid models have been widely used since their development, because the results obtained from this type of culture model better represent physiological conditions than those from well-established cell lines. The three-dimensional (3D) porcine intestinal organoid model was reported in 2018 and 2019 for the investigation of intestinal pathogens. However, those organoid culture models were basal-out intestinal organoids, which are not suitable for porcine enteric virus research because they invade the intestines via the apical side of epithelial cells on villi. In this study, we developed a porcine apical-out intestinal organoid culture system and verified its infectivity, type I and type III interferon (IFN) antiviral responses, and inflammatory responses following infection by a swine enteric virus. Our results imply that this apical-out porcine intestinal organoid culture system is an ideal model for the investigation of interactions between swine enteric viruses and the intestines.


Assuntos
Células Epiteliais/imunologia , Gastroenterite Suína Transmissível/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Organoides/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Bioensaio , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Gastroenterite Suína Transmissível/genética , Gastroenterite Suína Transmissível/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Organoides/patologia , Organoides/virologia , Suínos , Vírus da Gastroenterite Transmissível/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA