Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.970
Filtrar
1.
PLoS One ; 19(5): e0303048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753867

RESUMO

Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.


Assuntos
Antibacterianos , Simulação por Computador , Disenteria Bacilar , Simulação de Acoplamento Molecular , Shigella dysenteriae , Shigella dysenteriae/efeitos dos fármacos , Shigella dysenteriae/genética , Shigella dysenteriae/patogenicidade , Humanos , Antibacterianos/farmacologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/tratamento farmacológico , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos
2.
Front Cell Infect Microbiol ; 14: 1398706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756231

RESUMO

Introduction: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.


Assuntos
Adaptação Fisiológica , Infecções por Mycoplasma , Mycoplasma hominis , Proteogenômica , Humanos , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Infecções por Mycoplasma/microbiologia , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano , Fenótipo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
3.
Environ Microbiol ; 26(5): e16640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775217

RESUMO

Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.


Assuntos
Genoma Bacteriano , Filogenia , Microbiologia do Solo , Tundra , Acidobacteria/genética , Acidobacteria/classificação , Acidobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Regiões Árticas
4.
Curr Microbiol ; 81(7): 186, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775831

RESUMO

The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95-96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.


Assuntos
DNA Bacteriano , Exiguobacterium , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Exiguobacterium/genética , Exiguobacterium/classificação , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana
5.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771013

RESUMO

In June 2023, UKHSA surveillance systems detected an outbreak of severe gastrointestinal symptoms caused by a rare serotype of Shiga toxin-producing Escherichia coli, STEC O183:H18. There were 26 cases aged 6 months to 74 years (42 % cases were aged 0-9 years), distributed across the UK with onset dates range between 22 May 2023 and 4 July 2023. The epidemiological and food chain investigations were inconclusive, although meat products made from beef mince were implicated as a potential vehicle. The outbreak strain belonged to sequence type (ST) 657 and harboured a Shiga toxin (stx) subtype stx2a located on a prophage that was unique in the UKHSA stx-encoding bacteriophage database. Plasmid encoded, putative virulence genes subA, ehxA, saa, iha, lpfA and iss were detected, however, the established STEC virulence genes involved in attachment to the gut mucosa (eae and aggR) were absent. The acquisition of stx across the global population structure of ST657 appeared to correspond with the presence of subA, ehxA, saa, iha, lpfA and iss. During the outbreak investigation, we used long read sequencing to characterise the plasmid and prophage content of this atypical STEC, to look for evidence to explain its recent emergence. Although we were unable to determine source and transmission route of the outbreak strain, the genomic analysis revealed potential clues as to how novel strains for STEC evolve. With the implementation of PCR capable of detecting all STEC, and genome sequencing for typing and virulence profiling, we have the tools to enable us to monitor the changing landscape of STEC. Improvements in the standardised collection of epidemiological data and trace-back strategies within the food industry, will ensure we have a surveillance system capable of alerting us to emerging threats to public health.


Assuntos
Surtos de Doenças , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Humanos , Reino Unido/epidemiologia , Idoso , Plasmídeos/genética , Adulto , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Criança , Adolescente , Masculino , Fatores de Virulência/genética , Feminino , Genômica , Prófagos/genética , Adulto Jovem , Genoma Bacteriano
6.
PLoS One ; 19(5): e0299588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718091

RESUMO

Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.


Assuntos
Corynebacterium glutamicum , Variação Genética , Genoma Bacteriano , Filogenia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Família Multigênica , Genômica/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38722758

RESUMO

Strain TC023T, a Gram-positive, long, rod-shaped, spore-forming anaerobe, was isolated from the faeces of a heart failure mouse model. The strain formed greyish-white coloured colonies with a convex elevation on brain-heart infusion medium supplemented with 0.1 % sodium taurocholate, incubated at 37 °C for 2 days. Taxonomic analysis based on the 16S rRNA gene sequence showed that TC023T belonged to the genus Turicibacter, and was closely related to Turicibacter bilis MMM721T (97.6 %) and Turicibacter sanguinis MOL361T (97.4 %). The whole genome of the strain has a G+C content of 37.3 mol%. The average nucleotide identity and genome-to-genome distance between TC023T and Turicibacter bilis MMM721T were 77.6 % and 24.3 %, respectively, and those with Turicibacter sanguinis MOL361T were 75.4 % and 24.3 %, respectively. These genotypic, phenotypic, and biochemical analyses indicated that the isolate represents a novel species in the genus Turicibacter, and the name Turicibacter faecis sp. nov. is proposed. The type strain is TC023T (RIMD 2002001T=TSD 372T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Modelos Animais de Doenças , Fezes , Insuficiência Cardíaca , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Camundongos , DNA Bacteriano/genética , Insuficiência Cardíaca/microbiologia , Genoma Bacteriano , Masculino , Ácidos Graxos
8.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723602

RESUMO

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Assuntos
Prófagos , Vibrio cholerae , Vibrio cholerae/genética , Prófagos/genética , Prófagos/fisiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Genoma Bacteriano , Bacteriófagos/genética , Bacteriófagos/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
9.
Sci Data ; 11(1): 484, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730026

RESUMO

Barley (Hordeum vulgare) is essential to global food systems and the brewing industry. Its physiological traits and microbial communities determine malt quality. Although microbes influence barley from seed health to fermentation, there is a gap in metagenomic insights during seed storage. Crucially, elucidating the changes in microbial composition associated with barley seeds is imperative for understanding how these fluctuations can impact seed health and ultimately, influence both agricultural yield and quality of barley-derived products. Whole metagenomes were sequenced from eight barley seed samples obtained at different storage time points from harvest to nine months. After binning, 82 metagenome-assembled genomes (MAGs) belonging to 26 distinct bacterial genera were assembled, with a substantial proportion of potential novel species. Most of our MAG dataset (61%) showed over 90% genome completeness. This pioneering barley seed microbial genome retrieval provides insights into species diversity and structure, laying the groundwork for understanding barley seed microbiome interactions at the genome level.


Assuntos
Hordeum , Sementes , Hordeum/microbiologia , Hordeum/genética , Sementes/microbiologia , Metagenoma , Microbiota , Metagenômica , Genoma Microbiano , Genoma Bacteriano , Bactérias/genética , Bactérias/classificação
10.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734623

RESUMO

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Assuntos
Actinidia , Genoma Bacteriano , Genômica , Filogenia , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , China , Actinidia/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia
11.
Nat Commun ; 15(1): 3988, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734682

RESUMO

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Assuntos
Anaplasma , Animais Selvagens , Ehrlichia , Filogenia , Floresta Úmida , Carrapatos , Anaplasma/genética , Anaplasma/isolamento & purificação , Anaplasma/patogenicidade , Anaplasma/classificação , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Ehrlichia/classificação , Humanos , Animais , Carrapatos/microbiologia , Animais Selvagens/microbiologia , Anaplasmose/microbiologia , Anaplasmose/epidemiologia , Anaplasmose/transmissão , Guiana Francesa , Ehrlichiose/microbiologia , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Ehrlichiose/transmissão , Metagenômica/métodos , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38739681

RESUMO

A set of 25 strains belonging to clade V of Mannheimia mainly isolated from cattle was investigated and is proposed to represent Mannheimia indoligenes sp. nov. The species can be separated from the other validly published species of the genus by pheno- and genotype. Only indole separates M. indoligenes and Mannheimia varigena while two to seven characters separate M. indoligenes from other species of Mannheimia. Thirteen strains belonging to biogroups 6, 7, 8C, 9, 10, 12 and UG5 formed a monophyletic group based on 16S rRNA gene sequence comparisons with 98-100 % similarity. Eight of these strains were further included in the whole genome comparison. Digital DNA-DNA hybridization showed that the similarities between the suggested type strain M14.4T and the other strains of M. indoligenes were 62.9 % or higher. The average nucleotide identity was 95.5 % or higher between M14.4T and the other strains of the species. The rpoB gene sequence similarity was 95-100 % within M. indoligenes. MALDI-TOF allowed a clear separation from other Mannheimia species further supporting classification as a novel species and making it the diagnostic identification tool of choice for M. indoligenes. The type strain is M14.4T (=CCUG 77347T=DSM 116804T) isolated from a cattle tongue in Scotland.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Bovinos , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Genoma Bacteriano
13.
Artigo em Inglês | MEDLINE | ID: mdl-38739685

RESUMO

An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Eubacterium , Ácidos Graxos , Fezes , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Humanos , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Feminino , Eubacterium/genética , Eubacterium/isolamento & purificação , Eubacterium/classificação , Fezes/microbiologia , Butiratos/metabolismo , Genoma Bacteriano , China , Adulto
14.
PeerJ ; 12: e17381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726379

RESUMO

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Assuntos
Escherichia coli , Fezes , Panthera , Tigres , Sequenciamento Completo do Genoma , Animais , Tigres/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Panthera/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , China , Virulência/genética , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único/genética , Tipagem de Sequências Multilocus
15.
Genome Med ; 16(1): 67, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711148

RESUMO

BACKGROUND: Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS: We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS: We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS: Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Estudos Longitudinais , Vacinas Bacterianas/imunologia , Adulto , Feminino , Hospitais , Criança , Masculino , Pré-Escolar , Lactente , Pessoa de Meia-Idade , África Subsaariana/epidemiologia , Infecção Hospitalar/microbiologia , Adolescente , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla/genética , Recém-Nascido , Malaui/epidemiologia , Adulto Jovem
16.
Glob Health Epidemiol Genom ; 2024: 8872463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716477

RESUMO

This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, ß-lactam/ß-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Tailândia/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/tratamento farmacológico , Humanos , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Carbapenêmicos/farmacologia , Virulência/genética
17.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717815

RESUMO

Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9 %), 1/36 RT056 strains (2.78 %) and none of 77 RT002 strains. Notably, ~90 % of strains were resistant to MLSB agents in vitro, but only ~5.9 % harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63 % (12/19) comprised isolates from the same Australian State and 37 % (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Filogenia , Ribotipagem , Clostridioides difficile/genética , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Austrália/epidemiologia , Humanos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/transmissão , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Genótipo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38717929

RESUMO

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Peixes , Flavobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Animais , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Peixes/microbiologia , Genoma Bacteriano , Aquicultura , Fosfatidiletanolaminas
19.
Curr Microbiol ; 81(7): 168, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733376

RESUMO

In 2018, Nouioui et al. proposed that Bifidobacterium coryneforme was a later synonym of Bifidobacterium indicum on the basis of the digital DNA-DNA hybridization (dDDH) value (85.0%) between B. coryneforme LMG 18911T and B. indicum LMG 11587T. However, in the study of Scardovi et al. (1970), the type strains of B. indicum and B. coryneforme only exhibited 60% DNA-DNA hybridization value. In the present study, the genomes of B. coryneforme CGMCC 1.2279T, B. coryneforme JCM 5819T, B. indicum JCM 1302T, B. indicum CGMCC 1.2275T, B. indicum DSM 20214T, B. indicum LMG 27437T, B. indicum ATCC 25912T, B. indicum KCTC 3230T, B. indicum CCUG 34985T, were sequenced, and the taxonomic relationship between B. coryneforme and B. indicum was re-evaluated. On the basis of the results presented here, (i) ATCC 25912 and DSM 20214 deposited by Vittorio Scardovi are two different strains; (ii) the type strain of B. indicum is ATCC 25912T (= JCM 1302T = LMG 27437T = CGMCC 1.2275T = KCTC 3230T), and not DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587); (iii) B. coryneforme and B. indicum represent two different species of the genus Bifidobacterium; (iv) strain DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587) belongs to B. coryneforme.


Assuntos
Bifidobacterium , DNA Bacteriano , Genoma Bacteriano , Filogenia , Bifidobacterium/genética , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Mar Genomics ; 75: 101107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735672

RESUMO

Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to "Candidatus Manganitrophaceae" of phylum Nitrospirota with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, Nitrospirota members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to Nitrospirota are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these Nitrospirota have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order Nitrospirales has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these Nitrospirota. In addition, different metal ion transport systems can help those Nitrospirota to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of Nitrospirota in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.


Assuntos
Genoma Bacteriano , Sedimentos Geológicos , Metagenoma , Sedimentos Geológicos/microbiologia , Oceano Pacífico , Manganês/metabolismo , Bactérias/genética , Bactérias/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA