RESUMO
The formation of phytoene by condensing two geranylgeranyl diphosphate molecules catalyzed by phytoene synthase (PSY) is the first committed and rate-limiting step in carotenoid biosynthesis, which has been extensively investigated in bacteria, land plants and microalgae. However, this step in macroalgae remains unknown. In the present study, a gene encoding putative phytoene synthase was cloned from the economic red alga Pyropia yezoensis-a species that has long been used in food and pharmaceuticals. The conservative motifs/domains and the tertiary structure predicted using bioinformatic tools suggested that the cloned PyPSY should encode a phytoene synthase; this was empirically confirmed by pigment complementation in E. coli. This phytoene synthase was encoded by a single copy gene, whose expression was presumably regulated by many factors. The phylogenetic relationship of PSYs from different organisms suggested that red algae are probably the progeny of primary endosymbiosis and plastid donors of secondary endosymbiosis.
Assuntos
Geranil-Geranildifosfato Geranil-Geraniltransferase , Filogenia , Rodófitas , Rodófitas/genética , Rodófitas/enzimologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Carotenoides/metabolismo , Escherichia coli/genética , Clonagem Molecular , Algas Comestíveis , PorphyraRESUMO
Modern tomatoes produce colorful mature fruits, but many wild tomato ancestors form green or gray green ripe fruits. Here, tomato cultivar 'Lvbaoshi' (LBS) that produces green ripe fruits was found to contain three recessive loci responsible for fruit development. The colorless peel of LBS fruits was caused by a 603 bp deletion in the promoter of SlMYB12. The candidate genes of the remaining two loci were identified as STAY-GREEN 1 (SlSGR1) and PHYTOENE SYNTHASE 1 (SlPSY1). SGR1 and PSY1 co-suppression by RNAi converted the pink fruits into green ripe fruits in transgenic plants. An amino acid change in PSY1 and a deletion in the promoter of SGR1 were also identified in several wild tomatoes bearing green or gray ripe fruits. Overexpression of PSY1 from green ripe fruit wild tomatoes in LBS plants could only partially rescue the green ripe fruit phenotype of LBS, and transgenic lines expressing ProSGR1::SGR1 from Solanum pennellii also failed to convert purple-flesh into red-flesh fruits. This work uncovers a novel regulatory mechanism by which SlMYB12, SlPSY1, and SlSGR1 control fruit color in cultivated and some wild tomato species.
Assuntos
Alquil e Aril Transferases , Frutas , Geranil-Geranildifosfato Geranil-Geraniltransferase , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Mutação , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The structure and phylogeny of the Solanum tuberosum L. phytoene synthase genes StPSY1, StPSY2, and StPSY3 were characterized. Their expression was studied in potato seedlings exposed to cold stress in the dark phase of the diurnal cycle to simulate night cooling. All of the three genes were activated as the temperature decreased, and the greatest response was observed for StPSY1. StPSY3 was for the first time shown to respond to cold stress and photoperiod. A search for cis-regulatory elements was carried out in the promoter regions and 5'-UTRs of the StPSY genes, and the regulation of all three genes proved associated with the response to light. A high level of cold-induced activation of StPSY1 was tentatively attributed to the presence of cis elements associated with sensitivity to cold and ABA.
Assuntos
Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/enzimologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genéticaRESUMO
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nudix Hidrolases , Cloroplastos/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/genética , Pirofosfatases/metabolismo , Pirofosfatases/genética , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas , Folhas de Planta/metabolismo , Folhas de Planta/genéticaRESUMO
PHYTOENE SYNTHASE (PSY) is a rate-limiting enzyme catalysing the first committed step of carotenoid biosynthesis, and changes in PSY gene expression and/or protein activity alter carotenoid composition and plastid differentiation in plants. Four genetic variants of PSY (psy-4, psy-90, psy-130, and psy-145) were identified using a forward genetics approach that rescued leaf virescence phenotypes and plastid abnormalities displayed by the Arabidopsis CAROTENOID ISOMERASE (CRTISO) mutant ccr2 (carotenoid and chloroplast regulation 2) when grown under a shorter photoperiod. The four non-lethal mutations affected alternative splicing, enzyme-substrate interactions, and PSY:ORANGE multi-enzyme complex binding, constituting the dynamic post-transcriptional fine-tuning of PSY levels and activity without changing localization to the stroma and protothylakoid membranes. psy genetic variants did not alter total xanthophyll or ß-carotene accumulation in ccr2, yet they reduced specific acyclic linear cis-carotenes linked to the biosynthesis of a currently unidentified apocarotenoid signal regulating plastid biogenesis, chlorophyll biosynthesis, and photomorphogenic regulation. ccr2 psy variants modulated the PHYTOCHROME-INTERACTING FACTOR 3/ELONGATED HYPOCOTYL 5 (PIF3/HY5) ratio, and displayed a normal prolamellar body formation in etioplasts and chlorophyll accumulation during seedling photomorphogenesis. Thus, suppressing PSY activity and impairing PSY:ORANGE protein interactions revealed how cis-carotene abundance can be fine-tuned through holoenzyme-metabolon interactions to control plastid development.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Arabidopsis/metabolismo , Carotenoides/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Clorofila/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Colorretais , Mieloma Múltiplo , Neoplasias Pancreáticas , Humanos , Camundongos , Ratos , Animais , Geranil-Geranildifosfato Geranil-Geraniltransferase , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Neoplasias Pancreáticas/patologia , Apoptose , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Carotenoids are plastidial isoprenoids required for photoprotection and phytohormone production in all plants. In tomato (Solanum lycopersicum), carotenoids also provide color to flowers and ripe fruit. Phytoene synthase (PSY) catalyzes the first and main flux-controlling step of the carotenoid pathway. Three genes encoding PSY isoforms are present in tomato, PSY1 to PSY3. Mutants have shown that PSY1 is the isoform providing carotenoids for fruit pigmentation, but it is dispensable in photosynthetic tissues. No mutants are available for PSY2 or PSY3, but their expression profiles suggest a main role for PSY2 in leaves and PSY3 in roots. To further investigate isoform specialization with genetic tools, we created gene-edited lines defective in PSY1 and PSY2 in the MicroTom background. The albino phenotype of lines lacking both PSY1 and PSY2 confirmed that PSY3 does not contribute to carotenoid biosynthesis in shoot tissues. Our work further showed that carotenoid production in tomato shoots relies on both PSY1 and PSY2 but with different contributions in different tissues. PSY2 is the main isoform for carotenoid biosynthesis in leaf chloroplasts, but PSY1 is also important in response to high light. PSY2 also contributes to carotenoid production in flower petals and, to a lesser extent, fruit chromoplasts. Most interestingly, our results demonstrate that fruit growth is controlled by abscisic acid (ABA) specifically produced in the pericarp from PSY1-derived carotenoid precursors, whereas PSY2 is the main isoform associated with ABA synthesis in seeds and salt-stressed roots.
Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.
Assuntos
Diterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Farnesiltranstransferase , Carotenoides/metabolismo , Isoformas de Proteínas , Folhas de Planta/metabolismoRESUMO
Chlorophylls and carotenoids are essential photosynthetic pigments. Plants spatiotemporally coordinate the needs of chlorophylls and carotenoids for optimal photosynthesis and fitness in response to diverse environmental and developmental cues. However, how the biosynthesis pathways of these two pigments are coordinated, particularly at posttranslational level to allow rapid control, remains largely unknown. Here, we report that the highly conserved ORANGE (OR) family proteins coordinate both pathways via posttranslationally mediating the first committed enzyme in each pathway. We demonstrate that OR family proteins physically interact with magnesium chelatase subunit I (CHLI) in chlorophyll biosynthesis pathway in addition to phytoene synthase (PSY) in carotenoid biosynthesis pathway and concurrently stabilize CHLI and PSY enzymes. We show that loss of OR genes hinders both chlorophyll and carotenoid biosynthesis, limits light-harvesting complex assembly, and impairs thylakoid grana stacking in chloroplasts. Overexpression of OR safeguards photosynthetic pigment biosynthesis and enhances thermotolerance in both Arabidopsis and tomato plants. Our findings establish a novel mechanism by which plants coordinate chlorophyll and carotenoid biosynthesis and provide a potential genetic target to generate climate-resilient crops.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Clorofila/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Carotenoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismoRESUMO
Precursor regulation has been an effective strategy to improve carotenoid production and the availability of novel precursor synthases facilitates engineering improvements. In this work, the putative geranylgeranyl pyrophosphate synthase encoding gene (AlGGPPS) and isopentenyl pyrophosphate isomerase encoding gene (AlIDI) from Aurantiochytrium limacinum MYA-1381 were isolated. We applied the excavated AlGGPPS and AlIDI to the de novo ß-carotene biosynthetic pathway in Escherichia coli for functional identification and engineering application. Results showed that the two novel genes both functioned in the synthesis of ß-carotene. Furthermore, AlGGPPS and AlIDI performed better than the original or endogenous one, with 39.7% and 80.9% increases in ß-carotene production, respectively. Due to the coordinated expression of the 2 functional genes, ß-carotene content of the modified carotenoid-producing E. coli accumulated a 2.99-fold yield of the initial EBIY strain in 12 h, reaching 10.99 mg/L in flask culture. This study helped to broaden current understanding of the carotenoid biosynthetic pathway in Aurantiochytrium and provided novel functional elements for carotenoid engineering improvements.
Assuntos
Escherichia coli , beta Caroteno , beta Caroteno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Carotenoides/metabolismoRESUMO
BACKGROUND: Geranylgeranyl pyrophosphate synthase (GGPS) is a structural enzyme of the terpene biosynthesis pathway that is involved in regulating plant photosynthesis, growth and development, but this gene family has not been systematically studied in cotton. RESULTS: In the current research, genome-wide identification was performed, and a total of 75 GGPS family members were found in four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii. The GGPS genes were divided into three subgroups by evolutionary analysis. Subcellular localization prediction showed that they were mainly located in chloroplasts and plastids. The closely related GGPS contains a similar gene structure and conserved motif, but some genes are quite different, resulting in functional differentiation. Chromosome location analysis, collinearity and selection pressure analysis showed that many fragment duplication events occurred in GGPS genes. Three-dimensional structure analysis and conservative sequence analysis showed that the members of the GGPS family contained a large number of α-helices and random crimps, and all contained two aspartic acid-rich domains, DDxxxxD and DDxxD (x is an arbitrary amino acid), suggesting its key role in function. Cis-regulatory element analysis showed that cotton GGPS may be involved in light response, abiotic stress and other processes. A GGPS gene was silenced successfully by virus-induced gene silencing (VIGS), and it was found that the chlorophyll content in cotton leaves decreased significantly, suggesting that the gene plays an important role in plant photosynthesis. CONCLUSIONS: In total, 75 genes were identified in four Gossypium species by a series of bioinformatics analysis. Gene silencing from GGPS members of G. hirsutum revealed that GGPS plays an important regulatory role in photosynthesis. This study provides a theoretical basis for the biological function of GGPS in cotton growth and development.
Assuntos
Gossypium , Proteínas de Plantas , Gossypium/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Proteínas de Plantas/genética , Família Multigênica , Sequências Reguladoras de Ácido Nucleico , Filogenia , Regulação da Expressão Gênica de PlantasRESUMO
As one of the most imperative antioxidants in higher plants, carotenoids serve as accessory pigments to harvest light for photosynthesis and photoprotectors for plants to adapt to high light stress. Here, we report a small subunit (SSU) of geranylgeranyl diphosphate synthase (GGPPS) in Nicotiana tabacum, NtSSU II, which takes part in the regulation carotenoid biosynthesis by forming multiple enzymatic components with NtGGPPS1 and downstream phytoene synthase (NtPSY1). NtSSU II transcript is widely distributed in various tissues and stimulated by low light and high light treatments. The confocal image revealed that NtSSU II was localized in the chloroplast. Bimolecular fluorescence complementation (BiFC) indicated that NtSSU II and NtGGPPS1 formed heterodimers, which were able to interact with phytoene synthase (NtPSY1) to channel GGPP into the carotenoid production. CRISPR/Cas9-induced ntssu II mutant exhibited decreased leaf area and biomass, along with a decline in carotenoid and chlorophyll accumulation. Moreover, the genes involved in carotenoid biosynthesis were also downregulated in transgenic plants of ntssu II mutant. Taken together, the newly identified NtSSU II could form multiple enzymatic components with NtGGPPS1 and NtPSY1 to regulate carotenoid biosynthesis in N. tabacum, in addition to the co-expression of genes in carotenoids biosynthetic pathways.
Assuntos
Carotenoides , Nicotiana , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Carotenoides/metabolismo , Fotossíntese , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismoRESUMO
Carotenoids are natural pigments that influence the color of citrus fruit. The red-colored carotenoid ß-citraurin is responsible for the peel color in "Newhall" orange (Citrus sinensis). Although jasmonates are known to regulate the biosynthesis and accumulation of carotenoids, their effects on ß-citraurin biosynthesis in citrus fruit remain unclear. Here, we determined that treatment with methyl jasmonate (MeJA) significantly promotes fruit coloration and ß-citraurin production in "Newhall" orange. A MeJA treatment induced the expression of CsMYC2, which encodes a transcription factor that serves as a master regulator of jasmonate responses. CsMYC2 bound the promoter of the gene that encodes carotenoid cleavage dioxygenase 4b (CsCCD4b), the key gene for ß-citraurin biosynthesis, and the promoters of genes that encode phytoene synthase (CsPSY), lycopene ß-cyclase (CsLCYb), and ß-carotene hydroxylase (CsBCH) and induced their expression. In addition, CsMYC2 promoted CsMPK6 expression. Notably, we found that CsMPK6 interacted with CsMYC2 and that this interaction decreased the stability and DNA-binding activity of CsMYC2. Thus, we conclude that negative feedback regulation attenuates JA signaling during the jasmonate-induced coloration of citrus fruit. Together, our findings indicate that jasmonates induce ß-citraurin biosynthesis in citrus by activating a CsMPK6-CsMYC2 cascade, thereby affecting fruit coloration.
Assuntos
Citrus sinensis , Citrus , Carotenoides/metabolismo , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-GeraniltransferaseRESUMO
As one of the most imperative antioxidants in higher plants, carotenoids serve as accessory pigments to harvest light for photosynthesis as well as photoprotectors for plants to adapt to high light stress. Phytoene synthase (PSY) is the entry enzyme and also the major rate-limiting enzyme in the carotenoid pathway. Here, we report a dehydration-responsive element-binding protein (DREB) transcription factor member in Nicotiana tabacum K326, NtDREB-1BL1, which regulates carotenoids biosynthesis by binding to the NtPSY promoter. The NtDREB-1BL1 transcript was widely distributed in leaves by Real-time PCR. Confocal image revealed that NtDREB-1BL1 was localized in the nucleus. The chromatin immunoprecipitation (ChIP) with the qPCR technique indicated that NtDREB-1BL1 could anchor the promoter region of NtPSY. Overexpression (NtDREB-1BL1 OE) and RNA interference (NtDREB-1BL1 RNAi) of NtDREB-1BL1 were performed to evaluate its biological function in N. tabacum. Both carotenoid and chlorophyll contents increased in transgenic plants of NtDREB-1BL1 OE compared with wild-type (WT) plants, with the augment of the genes involved in carotenoid biosynthesis. In contrast, the contents of carotenoid and chlorophyll significantly decreased in transgenic plants of NtDREB-1BL1 RNAi compared to WT, along with the decline in the expression of genes related to carotenoid biosynthesis. Moreover, transgenic plants of NtDREB-1BL1 OE exhibited enhanced tolerance under drought stress, with the weakened tolerance of drought stress in transgenic plants of NtDREB-1BL1 RNAi. In conclusion, our results illustrated the new role of transcription factor NtDREB-1BL1 in improving carotenoid biosynthesis through regulating NtPSY expression.
Assuntos
Carotenoides , Nicotiana , Carotenoides/metabolismo , Clorofila/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Cyanobacteria are photosynthetic prokaryotes with strong potential to be used for industrial terpenoid production. However, the key enzymes forming the principal terpenoid building blocks, called short-chain prenyltransferases (SPTs), are insufficiently characterized. Here, we examined SPTs in the model cyanobacteria Synechococcus elongatus sp. PCC 7942 and Synechocystis sp. PCC 6803. Each species has a single putative SPT (SeCrtE and SyCrtE, respectively). Sequence analysis identified these as type-II geranylgeranyl pyrophosphate synthases (GGPPSs) with high homology to GGPPSs found in the plastids of green plants and other photosynthetic organisms. In vitro analysis demonstrated that SyCrtE is multifunctional, producing geranylgeranyl pyrophosphate (GGPP; C20 ) primarily but also significant amounts of farnesyl pyrophosphate (FPP, C15 ) and geranyl pyrophosphate (GPP, C10 ); whereas SeCrtE appears to produce only GGPP. The crystal structures were solved to 2.02 and 1.37 Å, respectively, and the superposition of the structures against the GGPPS of Synechococcus elongatus sp. PCC 7002 yield a root mean square deviation of 0.8 Å (SeCrtE) and 1.1 Å (SyCrtE). We also discovered that SeCrtE is co-encoded in an operon with a functional GGPP phosphatase, suggesting metabolic pairing of these two activities and a putative function in tocopherol biosynthesis. This work sheds light on the activity of SPTs and terpenoid synthesis in cyanobacteria. Understanding native prenyl phosphate metabolism is an important step in developing approaches to engineering the production of different chain-length terpenoids in cyanobacteria.
Assuntos
Dimetilaliltranstransferase , Synechococcus , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Monoéster Fosfórico Hidrolases , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Synechococcus/genética , Synechococcus/metabolismoRESUMO
Orange protein (OR) is known to interact with phytoene synthase (PSY) that commits the first step in carotenoid biosynthesis, and functions as a major post-transcriptional regulator on PSY. We here tried to reveal enzymatic characteristics of OR, that is, protein disulfide reductase (PDR) activity of the Arabidopsis thaliana OR protein (AtOR) was analyzed using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The AtOR part containing only the zinc (Zn)-finger motif was found to show PDR activity, with an apparent Km of 12,632 nM, Kcat of 11.85 min-1, and KcatKm-1 of 15.6 × 103 M-1sec-1. To evaluate the significance of the N-terminal region of AtOR, we examined the kinetic parameters of a fusion protein composed of the N-terminal region and the Zn-finger motif from AtOR. Consequently, the fusion protein had lower values for Km (2,074 nM) and Kcat (3.18 min-1) and higher catalytic efficiency (25.9 × 103 M-1sec-1) than that of only the Zn-finger motif part, suggesting that the N-terminal region of AtOR should be important for substrate affinity and catalytic efficiency of PDR activity. Complementation experiments with E. coli further demonstrated that AtOR containing the N-terminal region and the Zn-finger motif increases phytoene synthase activity of AtPSY especially under reduced circumstances retaining a NADPH- and H+-regeneration system.
Assuntos
Arabidopsis , Citrus sinensis , Arabidopsis/metabolismo , Carotenoides/metabolismo , Citrus sinensis/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Oxirredutases/metabolismoRESUMO
MAIN CONCLUSION: Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.
Assuntos
Withania , Vitanolídeos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Giberelinas , Filogenia , Withania/genética , Vitanolídeos/metabolismoRESUMO
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Pirimidinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Ratos , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Tiofenos/toxicidadeRESUMO
Cassava (Manihot esculenta Crantz) biofortification with provitamin A carotenoids is an ongoing process that aims to alleviate vitamin A deficiency. The moderate content of provitamin A carotenoids achieved so far limits the contribution to providing adequate dietary vitamin A levels. Strategies to increase carotenoid content focused on genes from the carotenoids biosynthesis pathway. In recent years, special emphasis was given to ORANGE protein (OR), which promotes the accumulation of carotenoids and their stability in several plants. The aim of this work was to identify, characterize and investigate the role of OR in the biosynthesis and stabilization of carotenoids in cassava and its relationship with phytoene synthase (PSY), the rate-limiting enzyme of the carotenoids biosynthesis pathway. Gene and protein characterization of OR, expression levels, protein amounts and carotenoids levels were evaluated in roots of one white (60444) and two yellow cassava cultivars (GM5309-57 and GM3736-37). Four OR variants were found in yellow cassava roots. Although comparable expression was found for three variants, significantly higher OR protein amounts were observed in the yellow varieties. In contrast, cassava PSY1 expression was significantly higher in the yellow cultivars, but PSY protein amount did not vary. Furthermore, we evaluated whether expression of one of the variants, MeOR_X1, affected carotenoid accumulation in cassava Friable Embryogenic Callus (FEC). Overexpression of maize PSY1 alone resulted in carotenoids accumulation and induced crystal formation. Co-expression with MeOR_X1 led to greatly increase of carotenoids although PSY1 expression was high in the co-expressed FEC. Our data suggest that posttranslational mechanisms controlling OR and PSY protein stability contribute to higher carotenoid levels in yellow cassava. Moreover, we showed that cassava FEC can be used to study the efficiency of single and combinatorial gene expression in increasing the carotenoid content prior to its application for the generation of biofortified cassava with enhanced carotenoids levels.
Assuntos
Carotenoides/metabolismo , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Provitaminas/metabolismo , Vitamina A/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Manihot/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismoRESUMO
KEY MESSAGE: A gene controlling golden flesh trait in watermelon was discovered and fine mapped to a 39.08 Kb region on chromosome 1 through a forward genetic strategy, and Cla97C01G008760 (annotated as phytoene synthase protein, ClPsy1 ) was recognized as the most likely candidate gene. Vitamin A deficiency is a worldwide public nutrition problem, and ß-carotene is the precursor for vitamin A synthesis. Watermelon with golden flesh (gf, which occurs due to an accumulated abundance of ß-carotene) is an important germplasm resource. In this study, a genetic analysis of segregated gf gene populations indicated that gf was controlled by a single recessive gene. BSA-seq (Bulked segregation analysis) and an initial linkage analysis placed the gf locus in a 290-Kb region on watermelon chromosome 1. Further fine mapping in a large population including over 1000 F2 plants narrowed this region to 39.08 Kb harboring two genes, Cla97C01G008760 and Cla97C01G008770, which encode phytoene synthase (ClPsy1) and GATA zinc finger domain-containing protein, respectively. Gene sequence alignment and expression analysis between parental lines revealed Cla97C01G008760 as the best possible candidate gene for the gf trait. Nonsynonymous SNP mutations in the first exon of ClPsy1 between parental lines co-segregated with the gf trait only among individuals in the genetic population and were not related to flesh color in natural watermelon panels. Promoter sequence analysis of 26 watermelon accessions revealed two SNPs in the cis-acting element sequences corresponding to MYB and MYC2 transcription factors. RNA-seq data and qRT-PCR verification showed that two MYBs exhibited expression trends similar to that of ClPsy1 in the parental lines and may regulate the ClPsy1 expression. Further research findings indicate that the gf trait is determined not only by ClPsy1 but also by ClLCYB, ClCRTISO and ClNCED7, which play important roles in watermelon ß-carotene accumulation.