Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
1.
Mol Cell Proteomics ; 23(4): 100745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447790

RESUMO

In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.


Assuntos
Maltose , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Cromatografia Líquida/métodos , Maltose/metabolismo , Maltose/análogos & derivados , Células HEK293 , Análise de Célula Única/métodos , Extração em Fase Sólida , Glicóis/farmacologia , Glicóis/química
2.
Int Immunopharmacol ; 129: 111617, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309093

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory condition, and Dimethyl fumarate (DMF) is known for inducing antioxidant enzymes and reducing reactive oxygen species (ROS). Fibroblast-like synoviocytes (FLS) contribute to joint damage by releasing interleukins (IL-1ß, IL-6, and IL-8) in response to ROS. Given ROS's impact on FLS acquiring an invasive phenotype, our study explored the effects of poly lactic-co-glycolic acid (PLGA) nanoparticles containing DMF on the expression of the HO-1 enzyme and the inflammatory cytokines IL-1ß, IL-6, and IL-8 in FLS cells. METHODS: In this study, we evaluated and compared the impact of Free-DMF and PLGA-DMF, on the gene expression of the HO-1 and inflammatory cytokines (IL-1ß, IL-6, and IL-8) in FLS cells derived from 13 patients with rheumatoid arthritis. qRT-PCR method was used to quantify the gene expression levels. RESULTS: PLGA-DMF nanoparticles demonstrated a significant increase in HO-1 expression and a significant decrease in IL-1ß gene expression. Also, a significant decrease in IL-6 gene expression was seen under the effect of Free-DMF. These results indicate the potential effectiveness of PLGA-DMF nanoparticles in reducing inflammation and improving rheumatoid arthritis symptoms. DISCUSSION: According to the findings, PLGA-DMF nanoparticles are expected to be effective in reducing inflammation and improving the symptoms of rheumatoid arthritis. Also, further studies on other factors affected by oxidative stress such as cell invasion factors and survival factors after the effect of PLGA-DMF nanoparticle are recommended.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Fumarato de Dimetilo/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicóis/metabolismo , Glicóis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Estresse Oxidativo , Fibroblastos
3.
Eur J Pharm Biopharm ; 196: 114182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224756

RESUMO

Glycols stand out as one of the most commonly employed safe and effective excipients for pharmaceutical and cosmeceutical products. Their widespread adoption can be attributed to their exceptional solvency characteristics and their ability to interact effectively with skin lipids and keratin for permeation enhancement. Notably, propylene glycol enjoys significant popularity in this regard. Ongoing research endeavours have been dedicated to scrutinising the impact of glycols on dermal drug delivery and shedding light on the intricate mechanisms by which glycols enhance skin permeation. This review aims to mitigate the discordance within the existing literature, assemble a holistic understanding of the impact of glycols on the percutaneous absorption of active compounds and furnish the reader with a profound comprehension of the foundational facets pertaining to their skin permeation enhancement mechanisms, while simultaneously delving deeper into the intricacies of these processes.


Assuntos
Glicóis , Pele , Solventes/farmacologia , Administração Cutânea , Glicóis/metabolismo , Glicóis/farmacologia , Pele/metabolismo , Absorção Cutânea , Propilenoglicol , Propilenoglicóis
4.
Drug Deliv Transl Res ; 14(2): 491-509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37612575

RESUMO

Despite the fact that chemoimmunotherapy has emerged as a key component in the era of cancer immunotherapy, it is challenged by the complex tumor microenvironment (TME) that is jam-packed with cellular and non-cellular immunosuppressive components. The aim of this study was to design a nanoparticulate system capable of sufficiently accumulating in the tumor and spleen to mediate local and systemic immune responses, respectively. The study also aimed to remodel the immunosuppressive TME. For such reasons, multi-functional polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) were engineered to simultaneously eradicate the cancer cells, silence the tumor-associated fibroblasts (TAFs), and re-educate the tumor-associated macrophages (TAMs) using doxorubicin, losartan, and metformin, respectively. These agents were also selected for their ability to tip the balance of the splenic immune cells towards immunostimulatory phenotypes. To establish TAM and TAF cultures, normal macrophages and fibroblasts were incubated with B16F10 melanoma cell (Mel)-derived secretome. Drug-loaded PLGA NPs were prepared, characterized, and tested in the target cell types. Organ distribution of fluorescein-loaded PLGA NPs was evaluated in a mouse model of melanoma. Finally, the local and systemic effects of different combination therapy programs were portrayed. The in vitro studies showed that the drug-loaded PLGA NPs could significantly ablate the immunosuppressive nature of Mel and skew TAMs and TAFs towards more favorable phenotypes. While in vivo, PLGA NPs were proven to exhibit long blood circulation time and to localize preferentially in the tumor and the spleen. The combination of either metformin or losartan with doxorubicin was superior to the monotherapy, both locally and systemically. However, the three-agent combo produced detrimental effects in the form of compromised well-being, immune depletion, and metastasis. These findings indicate the potential of TME remodeling as means to prime the tumors for successful chemoimmunotherapy. In addition, they shed light on the importance of the careful use of combination therapies and the necessity of employing dose-reduction strategies. D-NPs doxorubicin-loaded NPs, M-NPs metformin-loaded NPs, L-NPs losartan-loaded NPs, TAMs tumor-associated macrophages, TAFs tumor-associated fibroblasts, PD-L1 programmed death ligand 1, TNF-α tumor necrosis factor alpha, TGF-ß transforming growth factor beta, CD206/40/86 cluster of differentiation 206/40/86, α-SMA alpha-smooth muscle actin, MMPs matrix metalloproteases.


Assuntos
Melanoma , Metformina , Nanopartículas , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Glicóis/farmacologia , Microambiente Tumoral , Losartan , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacologia , Metformina/farmacologia , Linhagem Celular Tumoral
5.
IET Nanobiotechnol ; 17(5): 425-437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191102

RESUMO

The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC50 ) against Panc-1 cells was calculated 118.4 µL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quitosana/química , Ácido Poliglicólico/química , Ácido Fólico/química , Ácido Láctico/química , Ácido Láctico/farmacologia , Glicóis/farmacologia , Proteína X Associada a bcl-2/farmacologia , Apoptose , Nanopartículas/química , Portadores de Fármacos/química
6.
Biofouling ; 39(2): 145-156, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971265

RESUMO

Empirical knowledge of natural plant extracts is increasingly proving to be a promising field. The effect of Calendula officinalis L. (CO) and Capsicum annum (CA) glycolic extracts (GlExt) have potential that should be further developed in microbial tests. The effect of CO-GlExt and CA-GlExt was evaluated on eight multidrug-resistant clinical strains of Klebsiella pneumoniae and Pseudomonas aeruginosa, as well as collection strains for each bacterial. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extract were determined in comparison with 0.12% chlorhexidine. The tests were performed on single species biofilms, at 5 min and 24 h, using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The MIC and MBC of the extract ranged from 1.56 to 50 mg mL-1 for all strains evaluated. Analysis of the MTT assay revealed a strong antimicrobial potential of CA-GlExt, comparable to chlorhexidine. The findings suggest that CA-GlExt is effective against multidrug-resistant strains of K. pneumoniae and P. aeruginosa in planktonic state and biofilms.


Assuntos
Calendula , Capsicum , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Klebsiella pneumoniae , Glicóis/farmacologia , Clorexidina/farmacologia , Plâncton , Biofilmes , Mentol/farmacologia , Cânfora/farmacologia , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana
7.
Pharm Nanotechnol ; 11(4): 383-389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994980

RESUMO

INTRODUCTION: Titanium-based implants are widely used due to their good biocompatibility and high corrosion resistance. Infections after implant placement are the main reason for the failure of implant treatment. Some recent studies have also shown that microbial contamination can occur at the implant-abutment level in implants with healthy or diseased surrounding tissue. The purpose of this study is to investigate the antibacterial effect of slow-release nanoparticles of polylactic co-glycolic acid (PLGA) loaded with chlorhexidine (CHX) inside the implant fixture. MATERIALS AND METHODS: Thirty-six implants in three groups were examined in the bacterial culture environment. In the first group, PLGA/CHX nanoparticles; in the second group, the negative control group (distilled water) and in the third group, the positive control groups (chlorhexidine) were used. The bacterial suspensions, including Escherichia coli ATCC: 25922, Staphylococcus aureus ATCC: 6538 and Enterococcus faecalis ATCC: 29212 were used to investigate the antimicrobial effect of the prepared nanoparticles. RESULTS: The results showed that the use of PLGA/CHX nanoparticles significantly inhibited the growth of all three bacteria. Nanoparticles loaded with chlorhexidine had a significant decrease in the growth rate of all three bacteria compared to chlorhexidine and water. The lowest bacterial growth rate was observed in the Enterococcus faecalis/PLGA nanoparticles group, and the highest bacterial growth rate was observed in the Staphylococcus aureus/H2O group. CONCLUSION: The current study showed that the use of PLGA/CHX nanoparticles could significantly inhibit the growth of all three bacteria. Of course, the current study was conducted in vitro, and to obtain clinical results, we need to conduct a study on human samples. In addition, the results of this study showed that the chemical antimicrobial materials could be used in low concentrations and in a sustained- released manner in cases of dealing with bacterial infections, which can lead to better and targeted performance as well as reduce possible side effects.


Assuntos
Anti-Infecciosos , Implantes Dentários , Nanopartículas , Humanos , Clorexidina/química , Clorexidina/farmacologia , Antibacterianos/farmacologia , Glicóis/farmacologia , Escherichia coli , Nanopartículas/química
8.
Nanomedicine (Lond) ; 18(2): 125-143, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916394

RESUMO

Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.


The blood­brain barrier prevents many drugs used to treat brain diseases from having clinical effects. To solve this issue, some promising findings have been reported in the field of nanomedicine research, which will be introduced in this article as possible effective methods for the treatment of brain diseases. This review will focus on the nature of the polylactic-co-glycolic acid polymers involved in the preparation of desired targeted nanocarriers, the synthesis methods for achieving the drug loaded system and the choice and preparation of the targeting agents.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Glicóis/farmacologia , Ácido Poliglicólico , Ácido Láctico , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Preparações Farmacêuticas , Nanopartículas/uso terapêutico , Portadores de Fármacos/farmacologia
9.
J Biol Chem ; 298(10): 102365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963432

RESUMO

Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress-induced transcription of Heat Shock Factor 1-regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1-target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.


Assuntos
Cromatina , Glicóis , Nucleossomos , RNA Polimerase II , Transcrição Gênica , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Nucleossomos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Glicóis/farmacologia
10.
Front Cell Infect Microbiol ; 12: 926363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800390

RESUMO

The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.


Assuntos
Biofilmes , Glicóis , Antibacterianos/química , Antibacterianos/farmacologia , Glicóis/farmacologia , Testes de Sensibilidade Microbiana , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pseudomonas aeruginosa
11.
J Biomed Sci ; 29(1): 29, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534851

RESUMO

BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.


Assuntos
Antineoplásicos , Produtos Biológicos , Flavonoides , Neoplasias de Próstata Resistentes à Castração , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Glicolatos , Glicóis/farmacologia , Glicóis/uso terapêutico , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/farmacologia , Masculino , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico
12.
J Biomed Mater Res B Appl Biomater ; 110(9): 2100-2109, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35441415

RESUMO

Peripheral nerve injury (PNI) exists widely and seriously affects patients' daily lives. However, the effect of nerve repair is still limited, and only 50% of patients can recover useful functions. To overcome these obstacles, collagen-coated poly(lactic-co-glycolic acid) (PLGA) conduits loaded with CBD-IGF-1 were designed and tested in vitro and in vivo. The physical characterization of the conduit was tested by scanning electron microscopy, and the static water contact angle, release rate, and nerve regeneration ability of the conduit were verified in a rat sciatic nerve injury model. The results showed that the PLGA/col/CBD-IGF-1 conduit had a rough surface and good hydrophilicity. CBD-IGF-1 could be released slowly from the PLGA/col/CBD-IGF-1 conduit. In the in vivo experiment, gait analysis and electrophysiological evaluation showed that the sciatic functional index and electrophysiological parameters were best in the group treated with the PLGA/col/CBD-IGF-1 conduit. The pathological examination results for the sciatic nerve and gastrocnemius muscle in the group treated with the PLGA/col/CBD-IGF-1 conduit were better than those in the other three groups. In short, this study demonstrated the beneficial effects of CBD-IGF-1 in nerve regeneration. The PLGA/col/CBD-IGF-1 conduit has therapeutic potential for use in the treatment of PNI.


Assuntos
Traumatismos dos Nervos Periféricos , Ácido Poliglicólico , Animais , Colágeno/farmacologia , Glicóis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Ácido Láctico/química , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Nervo Isquiático/fisiologia
13.
Eur Rev Med Pharmacol Sci ; 26(4): 1183-1195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35253175

RESUMO

OBJECTIVE: Huperzine A, which was extracted from a Chinese herb, is a reversible and selective inhibitor of acetylcholinesterase (AChE), which is used as an anti-Alzheimer's drug that exerts evident pretreatment effects against exposure to organophosphate chemical warfare agents or pesticides. The aims of this study were to establish an LC-MS/MS method for the detection of HupA in biological samples and to investigate the pharmacokinetics of HupA polylactic-co-glycolic acid nanoparticles (HupA-PLGA-NPs) with different diameters in mice. MATERIALS AND METHODS: The proposed LC-MS/MS method was established by optimizing the MS conditions and validating the specificity, linear range, lower limit, precision, accuracy, matrix effects, absolute recovery, and sample stability of the method. ICR mice were divided into three treatment groups: the HupA control group, the 46.4-nm HupA-PLGA-NP group and the 208.5-nm HupA-PLGA-NP group. All the mice in the three groups were administered 0.5 mg/kg HupA via the tail vein. The pharmacokinetic parameters in plasma and the brain were detected by LC-MS/MS. Pharmacokinetic parameters were analyzed using PKS pharmacokinetic software, and the relative bioavailability and brain-targeted drug targeting efficiency (DTE) were also calculated. RESULTS: The distributions of HupA-PLGA-NP groups showed marked changes compared with that of HupA in mice in vivo, and the particle size of nanodrugs exerted a significant effect on the pharmacokinetic parameters in mice. The half-life (T1/2) values in plasma of the 46.4- and 208.5-nm HupA-PLGA-NPs were 1.53- and 1.96-fold longer than that of the HupA at the same dose. The bioavailabilities of the two nanoparticles were 1.93- and 2.19-fold higher than that of HupA, respectively. In the brain, the Tmax values of the two HupA-PLGA-NPs of different sizes was 1.25 h, which was clearly longer than that of HupA (0.5 h), and the corresponding T1/2 values were 12.53 h and 8.47 h, which were 1.82- and 1.23-fold higher than that of HupA (6.89 h). In addition, the brain targeting index of the 46.40-nm HupA-PLGA-NPs was 1.48, which revealed an evident brain-targeting effect. CONCLUSIONS: The LC-MS/MS method has the advantages of good specificity, high sensitivity and needing a low sample amount and is economical and particularly suitable for determining the drug content in plasma and brain samples. The NP size is associated with the distribution patterns of nanodrugs. Therefore, a particular NP size can be selected to maximize the pharmacodynamics effects and control the toxicity of nanodrugs.


Assuntos
Portadores de Fármacos , Nanopartículas , Acetilcolinesterase/farmacologia , Animais , Encéfalo , Cromatografia Líquida , Portadores de Fármacos/química , Glicóis/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , Tamanho da Partícula , Espectrometria de Massas em Tandem
14.
J Control Release ; 343: 755-764, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150813

RESUMO

The skin provides an attractive alternative to the conventional drug administration routes. Still, it comes with challenges as the upper layer of the skin, the stratum corneum (SC), provides an efficient barrier against permeation of most compounds. One way to overcome the skin barrier is to apply chemical permeation enhancers, which can modify the SC structure. In this paper, we investigated the molecular effect of three different types of glycols in SC: dipropylene glycol (diPG), propylene glycol (PG), and butylene glycol (BG). The aim is to understand how these molecules influence the molecular mobility and structure of the SC components, and to relate the molecular effects to the efficiency of these molecules as permeation enhancers. We used complementary experimental techniques, including natural abundance 13C NMR spectroscopy and wide-angle X-ray diffraction to characterize the molecular consequences of these compounds at different doses in SC at 97% RH humidity and 32 °C. In addition, we study the permeation enhancing effects of the same glycols in comparable conditions using Raman spectroscopy. Based on the results from NMR, we conclude that all three glycols cause increased mobility in SC lipids, and that the addition of glycols has an effect on the keratin filaments in similar manner as Natural Moisturizing Factor (NMF). The highest mobility of both lipids and amino acids can be reached with BG, which is followed by PG. It is also shown that one reaches an apparent saturation level for all three chemicals in SC, after which increased addition of the compound does not lead to further increase in the mobility of SC lipids or protein components. The examination with Raman mapping show that BG and PG give a significant permeation enhancement as compared to SC without any added glycol at corresponding conditions. Finally, we observe a non-monotonic response in permeation enhancement with respect to the concentration of glycols, where the highest concentration does not give the highest permeation. This is explained by the dehydration effects at highest glycol concentrations. In summary, we find a good correlation between the molecular effects of glycols on the SC lipid and protein mobility, and macroscopic permeation enhances of the same molecules.


Assuntos
Epiderme , Glicóis , Epiderme/metabolismo , Glicóis/metabolismo , Glicóis/farmacologia , Lipídeos/química , Permeabilidade , Propilenoglicol/química , Pele/metabolismo
15.
ChemMedChem ; 17(2): e202100548, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34719875

RESUMO

A cancer-mitochondria dual-targeting nanoparticle based on lactose and ferrocenium derivatives conjugated polydopamine (PDA@Lac/Fc/Hyp) was constructed, which exhibited cancer-targeting and mitochondria-targeting ability deriving from lactose and ferrocenium derivatives due to the specific carbohydrate-protein interaction and cationic species properties, respectively. Moreover, PDA@Lac/Fc/Hyp showed great biocompatibility and phototherapeutic efficiency. This work displays a good example of constructing cancer-mitochondria dual-targeting nanoparticle for synergistic phototherapy.


Assuntos
Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia , Glicóis/farmacologia , Indóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fotoquimioterapia , Polímeros/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Glicóis/química , Células Hep G2 , Humanos , Indóis/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Estrutura Molecular , Nanopartículas/química , Polímeros/química , Relação Estrutura-Atividade
16.
Clin Oral Investig ; 26(3): 2693-2701, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34694495

RESUMO

OBJECTIVES: This study evaluated the effect of embedding simvastatin (SIM) on the osteoinductive capacity of PLGA + HA/ßTCP scaffolds in stem cells from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS: Scaffolds were produced by PLGA solvent dissolution, addition of HA/ßTCP, solvent evaporation, and leaching of sucrose particles to impart porosity. Biphasic ceramic particles (70% HA/30% ßTCP) were added to the PLGA in a 1:1 (w:w) ratio. Scaffolds with SIM received 1% (w:w) of this medication. Scaffolds were synthesized in a disc-shape and sterilized by ethylene oxide. The experimental groups were (G1) PLGA + HA/ßTCP and (G2) PLGA + HA/ßTCP + SIM in non-osteogenic culture medium, while (G3) SHED and (G4) MC3T3-E1 in osteogenic culture medium were the positive control groups. The release profile of SIM from scaffolds was evaluated. DNA quantification assay, alkaline phosphatase activity, osteocalcin and osteonectin proteins, extracellular calcium detection, von Kossa staining, and X-ray microtomography were performed to assess the capacity of scaffolds to induce the osteogenic differentiation of SHED. RESULTS: The release profile of SIM followed a non-liner sustained-release rate, reaching about 40% of drug release at day 28. Additionally, G2 promoted the highest osteogenic differentiation of SHED, even when compared to the positive control groups. CONCLUSIONS: In summary, the osteoinductive capacity of poly(lactic-co-glycolic) acid and biphasic ceramic scaffolds was expressively enhanced by embedding simvastatin. CLINICAL RELEVANCE: Bone regeneration is still a limiting factor in the success of several approaches to oral and maxillofacial surgeries, though tissue engineering using mesenchymal stem cells, scaffolds, and osteoinductive mediators might collaborate to this topic.


Assuntos
Osteogênese , Sinvastatina , Diferenciação Celular , Cerâmica/farmacologia , Glicóis/farmacologia , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Sinvastatina/farmacologia , Engenharia Tecidual , Alicerces Teciduais
17.
Mol Brain ; 14(1): 137, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496937

RESUMO

We recently showed that synaptophysin (Syph) and synapsin (Syn) can induce liquid-liquid phase separation (LLPS) to cluster small synaptic-like microvesicles in living cells which are highly reminiscent of SV cluster. However, as there is no physical interaction between them, the underlying mechanism for their coacervation remains unknown. Here, we showed that the coacervation between Syph and Syn is primarily governed by multivalent pi-cation electrostatic interactions among tyrosine residues of Syph C-terminal (Ct) and positively charged Syn. We found that Syph Ct is intrinsically disordered and it alone can form liquid droplets by interactions among themselves at high concentration in a crowding environment in vitro or when assisted by additional interactions by tagging with light-sensitive CRY2PHR or subunits of a multimeric protein in living cells. Syph Ct contains 10 repeated sequences, 9 of them start with tyrosine, and mutating 9 tyrosine to serine (9YS) completely abolished the phase separating property of Syph Ct, indicating tyrosine-mediated pi-interactions are critical. We further found that 9YS mutation failed to coacervate with Syn, and since 9YS retains Syph's negative charge, the results indicate that pi-cation interactions rather than simple charge interactions are responsible for their coacervation. In addition to revealing the underlying mechanism of Syph and Syn coacervation, our results also raise the possibility that physiological regulation of pi-cation interactions between Syph and Syn during synaptic activity may contribute to the dynamics of synaptic vesicle clustering.


Assuntos
Vesículas Secretórias/química , Sinapsinas/química , Sinaptofisina/química , Substituição de Aminoácidos , Animais , Soluções Tampão , Células COS , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Genes Reporter , Glicóis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Líquidos Iônicos/química , Proteínas Luminescentes/análise , Camundongos , Mutação de Sentido Incorreto , Concentração Osmolar , Transição de Fase , Fotoquímica , Mutação Puntual , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/efeitos da radiação , Vesículas Secretórias/efeitos da radiação , Eletricidade Estática , Sinaptofisina/genética , Sinaptofisina/efeitos da radiação , Imagem com Lapso de Tempo , Tirosina/química , Proteína Vermelha Fluorescente
18.
EMBO J ; 40(21): e107711, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34524703

RESUMO

RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.


Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Grânulos de Ribonucleoproteínas Citoplasmáticas/efeitos dos fármacos , Grânulos de Ribonucleoproteínas Citoplasmáticas/ultraestrutura , Grânulos de Ribonucleoproteínas Citoplasmáticas/virologia , Regulação Viral da Expressão Gênica , Genes Reporter , Glicóis/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Haplorrinos , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração Osmolar , Fosforilação , Propilenoglicol/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/ultraestrutura , Transdução de Sinais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
19.
Genome Biol ; 22(1): 229, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404448

RESUMO

BACKGROUND: Liquid-liquid phase separation (LLPS) is an important organizing principle for biomolecular condensation and chromosome compartmentalization. However, while many proteins have been reported to undergo LLPS, quantitative and global analysis of chromatin LLPS property remains absent. RESULTS: Here, by combining chromatin-associated protein pull-down, quantitative proteomics and 1,6-hexanediol (1,6-HD) treatment, we develop Hi-MS and define an anti-1,6-HD index of chromatin-associated proteins (AICAP) to quantify 1,6-HD sensitivity of chromatin-associated proteins under physiological conditions. Compared with known physicochemical properties involved in phase separation, we find that proteins with lower AICAP are associated with higher content of disordered regions, higher hydrophobic residue preference, higher mobility and higher predicted LLPS potential. We also construct BL-Hi-C libraries following 1,6-HD treatment to study the sensitivity of chromatin conformation to 1,6-HD treatment. We find that the active chromatin and high-order structures, as well as the proteins enriched in corresponding regions, are more sensitive to 1,6-HD treatment. CONCLUSIONS: Our work provides a global quantitative measurement of LLPS properties of chromatin-associated proteins and higher-order chromatin structure. Hi-MS and AICAP data provide an experimental tool and quantitative resources valuable for future studies of biomolecular condensates.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Glicóis/farmacologia , Condensados Biomoleculares , Cromatina/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Glicóis/química , Humanos , Análise de Sequência de Proteína
20.
Genome Biol ; 22(1): 230, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404453

RESUMO

BACKGROUND: Biomolecular condensates have been implicated in multiple cellular processes. However, the global role played by condensates in 3D chromatin organization remains unclear. At present, 1,6-hexanediol (1,6-HD) is the only available tool to globally disrupt condensates, yet the conditions of 1,6-HD vary considerably between studies and may even trigger apoptosis. RESULTS: In this study, we first analyzed the effects of different concentrations and treatment durations of 1,6-HD and found that short-term exposure to 1.5% 1,6-HD dissolved biomolecular condensates whereas long-term exposure caused aberrant aggregation without affecting cell viability. Based on this condition, we drew a time-resolved map of 3D chromatin organization and found that short-term treatment with 1.5% 1,6-HD resulted in reduced long-range interactions, strengthened compartmentalization, homogenized A-A interactions, B-to-A compartment switch and TAD reorganization, whereas longer exposure had the opposite effects. Furthermore, the long-range interactions between condensate-component-enriched regions were markedly weakened following 1,6-HD treatment. CONCLUSIONS: In conclusion, our study finds a proper 1,6-HD condition and provides a resource for exploring the role of biomolecular condensates in 3D chromatin organization.


Assuntos
Condensados Biomoleculares/efeitos dos fármacos , Cromatina , Glicóis/farmacologia , Condensados Biomoleculares/química , Fenômenos Fisiológicos Celulares , Glicóis/química , Células HeLa , Humanos , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA