Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.767
Filtrar
1.
Carbohydr Polym ; 337: 122165, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710577

RESUMO

This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.


Assuntos
Betaína , Quitina , Solventes Eutéticos Profundos , Glicerol , Quitina/química , Betaína/química , Glicerol/química , Solventes Eutéticos Profundos/química , Hidrólise , Subtilisina/metabolismo , Subtilisina/química , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Colina/química
2.
Int J Pharm ; 656: 124088, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38582102

RESUMO

Viscosupplementation consists of hyaluronic acid (HA) intra-articular injections, commonly applied for osteoarthritis treatment while non-steroidal anti-inflammatory drugs (NSAIDs) are widely administered for pain relief. Here, HA and a NSAID (celecoxib) were combined in a formulation based on a low transition temperature mixture (LTTM) of glycerol:sorbitol, reported to increase celecoxib's solubility, thus rendering a potential alternative viscosupplement envisioning enhanced therapeutic efficiency. The inclusion of glucosamine, a cartilage precursor, was also studied. The developed formulations were assessed in terms of rheological properties, crucial for viscosupplementation: the parameters of crossover frequency, storage (G') and loss (G'') moduli, zero-shear-rate viscosity, stable viscosity across temperatures, and shear thinning behaviour, support viscoelastic properties suitable for viscosupplementation. Additionally, the gels biocompatibility was confirmed in chondrogenic cells (ATDC5). Regarding drug release studies, high and low clearance scenarios demonstrated an increased celecoxib (CEX) release from the gel (6 to 73-fold), compared to dissolution in PBS. The low clearance setup presented the highest and most sustained CEX release, highlighting the importance of the gel structure in CEX delivery. NMR stability studies over time demonstrated the LTTM+HA+CEX (GHA+CEX) gel as viable candidate for further in vivo evaluation. In sum, the features of GHA+CEX support its potential use as alternative viscosupplement.


Assuntos
Anti-Inflamatórios não Esteroides , Celecoxib , Liberação Controlada de Fármacos , Ácido Hialurônico , Osteoartrite , Viscossuplementação , Celecoxib/administração & dosagem , Celecoxib/química , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Osteoartrite/tratamento farmacológico , Viscossuplementação/métodos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Viscosidade , Temperatura de Transição , Reologia , Animais , Linhagem Celular , Camundongos , Solubilidade , Glicerol/química , Glucosamina/química , Glucosamina/administração & dosagem , Viscossuplementos/administração & dosagem , Viscossuplementos/química , Injeções Intra-Articulares
3.
Food Chem ; 448: 139135, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569405

RESUMO

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Assuntos
Cápsulas , Emulsões , Ácidos Graxos Ômega-3 , Óleos de Peixe , Gelatina , Emulsões/química , Cápsulas/química , Gelatina/química , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química , Animais , Tamanho da Partícula , Glicerol/química , Atum , Glicerídeos/química , Interações Hidrofóbicas e Hidrofílicas , Biocatálise
4.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663278

RESUMO

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Assuntos
Glicerol , Magnésio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Glicerol/química , Glicerol/farmacologia , Magnésio/química , Magnésio/farmacologia , Camundongos , Seda/química , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens , Humanos , Ratos , Nanofibras/química , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Células Endoteliais da Veia Umbilical Humana , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados
5.
Bioresour Technol ; 400: 130666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583673

RESUMO

Applications of deep eutectic solvent (DES) systems to separate lignocellulosic components are of interest to develop environmentally friendly processes and achieve efficient utilization of biomass. To enhance the performance of a binary neutral DES (glycerol:guanidine hydrochloride), various Lewis acids (e.g., AlCl3·6H2O, FeCl3·6H2O, etc.) were introduced to synthesize a series of ternary DES systems; these were coupled with microwave heating and applied to moso bamboo. Among the ternary DES systems evaluated, the FeCl3-based DES effectively removed lignin (81.17%) and xylan (85.42%), significantly improving enzymatic digestibility of the residual glucan and xylan (90.15% and 99.51%, respectively). Furthermore, 50.74% of the lignin, with high purity and a well-preserved structure, was recovered. A recyclability experiment showed that the pretreatment performance of the FeCl3-based DES was still basically maintained after five cycles. Overall, the microwave-assisted ternary DES pretreatment approach proposed in this study appears to be a promising option for sustainable biorefinery operations.


Assuntos
Solventes Eutéticos Profundos , Compostos Férricos , Lignina , Micro-Ondas , Lignina/química , Hidrólise , Solventes Eutéticos Profundos/química , Cloretos/química , Celulase/metabolismo , Celulase/química , Glicerol/química , Solventes/química , Sasa/química , Poaceae/química
6.
Food Chem Toxicol ; 188: 114668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641044

RESUMO

The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.


Assuntos
Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Solventes , Humanos , Solventes/toxicidade , Solventes/química , Linhagem Celular , Propilenoglicol/toxicidade , Glicerol/toxicidade , Glicerol/química , Dispositivos Lab-On-A-Chip , Espécies Reativas de Oxigênio/metabolismo , Nicotina/toxicidade , Biomarcadores/metabolismo
7.
J Mech Behav Biomed Mater ; 153: 106493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484428

RESUMO

Elastomeric biocomposites based on poly(glycerol adipate urethane) and hydroxyapatite were fabricated for tissue regeneration. The poly(glycerol adipate urethane) (PGAU) elastomeric composite matrices were obtained by chemical crosslinking of the poly(glycerol adipate) prepolymer (pPGA) with diisocyanate derivative of L-lysine. Two series of composites varying in the amount of L-lysine diisocyanate ethyl ester (LDI) used as a crosslinking agent were manufactured. As a ceramic filler both unmodified and L-lysine surface-modified hydroxyapatite (HAP) particles were used. The novelty of our research consists in the manufactured elastomeric materials and characterization of their linear viscoelastic (LVE) properties. The LVE properties of the composites were investigated by means of dynamic thermomechanical analysis. Frequency sweep and amplitude sweep measurements were performed in shear mode. The influence of the crosslinking agent (LDI) amount, HAP content and surface modification of HAP on the LVE properties of the composites was determined based on the analysis of the master curves of storage (G') and loss (G″) moduli and of tanδ of the composites. Depending on the amount of LDI, HAP and surface modification, the materials differ in the values of rubber elasticity plateau modulus (G0) and G' and G″ determined at selected shear frequencies and at the glassy state. G0 ranges from 278 kPa to 3.98 MPa, G' in the glassy state is within the range of 219 MPa-459 MPa. The G0 values of the PGAU-based composites are within the stiffness range of soft tissue. In view of the choice of HAP as the ceramic component and the G0 values, elastomeric composites have the potential to be used as filling materials in small bone defects (due to their mechanical similarity to osteoid) as well as materials for cartilage tissue regeneration.


Assuntos
Glicerol , Uretana , Glicerol/química , Lisina/química , Teste de Materiais , Elasticidade , Durapatita/química , Adipatos , Ésteres
8.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542457

RESUMO

Biomass valorization is an essential strategy for converting organic resources into valuable energy and chemicals, contributing to the circular economy, and reducing carbon footprints. Glycerol, a byproduct of biodiesel production, can be used as a feedstock for a variety of high-value products and can contribute to reducing the carbon footprint. This study examines the impact of surface-level modifications of Mg, Cu, and Sn on Ni-Ce-Zr catalysts for the hydrogenolysis of glycerol, with in situ generated hydrogen. The aim of this approach is to enhance the efficiency and sustainability of the biomass valorization process. However, the surface modification resulted in a decrease in the global conversion of glycerol due to the reduced availability of metal sites. The study found that valuable products, such as H2 and CH4 in the gas phase, and 1,2-PG in the liquid phase, were obtained. The majority of the liquid fraction was observed, particularly for Cu- and Sn-doped catalysts, which was attributed to their increased acidity. The primary selectivity was towards the cleavage of the C-O bond. Post-reaction characterizations revealed that the primary causes of deactivation was leaching, which was reduced by the inclusion of Cu and Sn. These findings demonstrate the potential of Cu- and Sn-modified Ni-Ce-Zr catalysts to provide a sustainable pathway for converting glycerol into value-added chemicals.


Assuntos
Glicerol , Metais , Glicerol/química , Hidrogênio/química , Catálise , Biocombustíveis
9.
Waste Manag ; 179: 55-65, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38460477

RESUMO

Biodiesel production produces significant quantities of impure crude glycerol as a by-product. Recent increases in the global biodiesel production have led to a surplus of crude glycerol, rendering it a waste. As a result, different methods for its valorisation are currently being investigated. This paper assesses the life cycle environmental impacts of an emerging technology for purification of crude glycerol - a multi-step physico-chemical treatment - in comparison to incineration with energy recovery commonly used for its disposal. For the former, three different acids (H3PO4, H2SO4 and HCl) are considered for the acidification step in the purification process. The results suggest that the H2SO4-based treatment is the best option with 17 net-negative impacts out of the 18 categories considered; this is due to system credits for the production of purified glycerol, heat and potassium salts. In comparison to incineration with energy recovery, the H2SO4-based process has lower savings for the climate change impact (-311 versus -504 kg CO2 eq./t crude glycerol) but it performs better in ten other categories. Sensitivity analyses suggest that that the impacts of the physico-chemical treatment are highly dependent on crude glycerol composition, allocation of burdens to crude glycerol and credits for glycerol production. For example, treating crude glycerol with lower glycerol content would increase all impacts except climate change and fossil depletion due to the higher consumption of chemicals and lower production of purified glycerol. Considering crude glycerol as a useful product rather than waste and allocating to it burdens from biodiesel production would increase most impacts significantly, including climate change (22-40 %), while fossil depletion, freshwater and marine eutrophication would become net-positive. The findings of this research will be of interest to the biodiesel industry and other industrial sectors that generate crude glycerol as a by-product.


Assuntos
Biocombustíveis , Glicerol , Biocombustíveis/análise , Glicerol/química , Meio Ambiente , Incineração , Tecnologia
10.
Food Chem ; 448: 139030, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531301

RESUMO

This study presents a novel approach using polyol-based proliposome to produce marine phospholipids nanoliposomes. Proliposomes were formulated by blending glycerol with phospholipids across varying mass ratios (2:1 to 1:10) at room temperature. Analysis employing polarized light microscopy, FTIR, and DSC revealed that glycerol disrupted the stacked acyl groups within phospholipids, lowering the phase transition temperature (Tm). Krill oil phospholipids (KOP) proliposomes exhibited superior performance in nanoliposomes formation, with a mean diameter of 125.60 ± 3.97 nm, attributed to the decreased Tm (-7.64 and 7.00 °C) compared to soybean phospholipids, along with a correspondingly higher absolute zeta potential (-39.77 ± 1.18 mV). The resulting KOP proliposomes demonstrated liposomes formation stability over six months and under various environmental stresses (dilution, thermal, ionic strength, pH), coupled with in vitro absorption exceeding 90 %. This investigation elucidates the mechanism behind glycerol-formulated proliposomes and proposes innovative strategies for scalable, solvent-free nanoliposome production with implications for functional foods and pharmaceutical applications.


Assuntos
Glicerol , Lipossomos , Nanopartículas , Fosfolipídeos , Lipossomos/química , Glicerol/química , Fosfolipídeos/química , Animais , Nanopartículas/química , Tamanho da Partícula , Euphausiacea/química
11.
Colloids Surf B Biointerfaces ; 236: 113828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452625

RESUMO

Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.


Assuntos
Nanopartículas , Poliésteres , Poliésteres/química , Glicerol/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Adipatos , Nanopartículas/química
12.
Int J Biol Macromol ; 264(Pt 2): 130698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458296

RESUMO

In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.


Assuntos
Quitosana , Ácidos Cumáricos , Nanopartículas , Glicerol/química , Quitosana/química , Polímeros/química , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
13.
Int J Biol Macromol ; 264(Pt 2): 130773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467211

RESUMO

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.9 MPa of tensile strength and 42 % of elongation at break at 53 % RH. These results are supported by field emission scanning electron microscopy (FESEM) micrographs, where a limited concentration of voids was observed in the samples with sorbitol and urea, indicating a better interaction between starch and the plasticizers. Thermogravimetric analysis (TGA) shows that urea and sorbitol increase the thermal stability of TPS in comparison to the glycerol-plasticized sample. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) verify the increase in stiffness of the sorbitol and urea plasticized TPS and also illustrate an increase in the glass transition temperature of both samples in comparison to the glycerol-plasticized sample. Glass transition temperatures of 45 °C were achieved for the sample with sorbitol.


Assuntos
Mangifera , Plastificantes , Plastificantes/química , Amido/química , Glicerol/química , Farinha , Plásticos , Sorbitol/química , Ureia/química
14.
J Biomed Mater Res A ; 112(7): 1107-1123, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433552

RESUMO

The ever-growing need for new tissue and organ replacement approaches paved the way for tissue engineering. Successful tissue regeneration requires an appropriate scaffold, which allows cell adhesion and provides mechanical support during tissue repair. In this light, an interpenetrating polymer network (IPN) system based on biocompatible polysaccharides, dextran (Dex) and gellan (Ge), was designed and proposed as a surface that facilitates cell adhesion in tissue engineering applications. The new matrix was developed in glycerol, an unconventional solvent, before the chemical functionalization of the polymer backbone, which provides the system with enhanced properties, such as increased stiffness and bioadhesiveness. Dex was modified introducing methacrylic groups, which are known to be sensitive to UV light. At the same time, Ge was functionalized with RGD moieties, known as promoters for cell adhesion. The printability of the systems was evaluated by exploiting the ability of glycerol to act as a co-initiator in the process, speeding up the kinetics of crosslinking. Following semi-IPNs formation, the solvent was removed by extensive solvent exchange with HEPES and CaCl2, leading to conversion into IPNs due to the ionic gelation of Ge chains. Mechanical properties were investigated and IPNs ability to promote osteoblasts adhesion was evaluated on thin-layer, 3D-printed disk films. Our results show a significant increase in adhesion on hydrogels decorated with RGD moieties, where osteoblasts adopted the spindle-shaped morphology typical of adherent mesenchymal cells. Our findings support the use of RGD-decorated Ge/Dex IPNs as new matrices able to support and facilitate cell adhesion in the perspective of bone tissue regeneration.


Assuntos
Adesão Celular , Dextranos , Glicerol , Metacrilatos , Oligopeptídeos , Polissacarídeos Bacterianos , Impressão Tridimensional , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Glicerol/química , Glicerol/farmacologia , Metacrilatos/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Dextranos/química , Adesão Celular/efeitos dos fármacos , Animais , Camundongos , Humanos
15.
Biomater Adv ; 160: 213830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552500

RESUMO

Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Glicerol/análogos & derivados , Nanopartículas , Poliésteres , Polímeros , Tecnologia sem Fio , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanopartículas/química , Polímeros/química , Poliésteres/química , Curcumina/administração & dosagem , Curcumina/química , Glicerol/química , Masculino , Neoplasias da Próstata/terapia , Antineoplásicos/administração & dosagem , Decanoatos/química , Nanofibras/química , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos
16.
Environ Sci Pollut Res Int ; 31(19): 28353-28367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538995

RESUMO

This study investigates the production of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) from glycerol via ketalization reaction using M-ZSM-5 catalysts (M = Fe, Co, Ni, Cu, and Zn). The wet impregnation method ensured precise metal loading and versatility in catalyst preparation. We present a novel approach by employing a suite of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Thermogravimetric analysis (TGA), and Field-emission scanning electron microscopy (FE-SEM), to elucidate the catalyst's structure, bonding, surface area, thermal stability, and morphology, ultimately linking these properties to their performance. Solketal synthesis was optimized in a reactor, with parameters like temperature, glycerol:acetone molar ratio, catalyst amount, reaction time, and stirring speed. Optimal conditions were identified as 60 °C, 1:4, 0.2 g, 60 min, and 1200 rpm, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed successful solketal formation. Among M-ZSM-5 catalysts tested, Cu-ZSM-5 emerged the most efficient, achieving an impressive 99% glycerol conversion and 96% solketal selectivity. Notably, Cu-ZSM-5 catalyst displayed exceptional reusability, regaining its initial activity through calcination, thus minimizing waste generation. This research unveils Cu-ZSM-5 as a highly efficient catalyst and promotes sustainability by utilizing a renewable glycerol feedstock to produce valuable solketal with applications in fuel additives, solvents, and pharmaceuticals. This work paves the way for developing environmentally friendly processes for waste valorization and producing valuable bio-based chemicals.


Assuntos
Glicerol , Zeolitas , Zeolitas/química , Glicerol/química , Catálise , Metais/química , Química Verde , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Int J Biol Macromol ; 263(Pt 1): 130165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367784

RESUMO

This work reports on the extraction and characterization of the behavior of starch from residues of several potato varieties (Criolla, Sabanera and Pastusa) of Colombian origin from the Andean region using different techniques and the evaluation of the effect of citric acid (CA) on the grain morphology. Additionally, films were produced with each one of the extracted starches and glycerol. Pastusa variety starch shows a higher granule size than the other varieties and Pastusa starch shows lower amylose content compared to Sabanera and Criolla. Criolla and Pastusa starches exhibit more thermal stability than Sabanera starch. Starch-glycerol films were also produced using the cast solving method. The films were mechanically analyzed by tensile test and the barrier properties were assessed by water vapor permeability (WVP). The tensile strength of the films varied in the 2.0-2.4 MPa range, while the elongation at break was comprised between 25 and 32 %. With regard to water vapor permeability, the obtained values fall within the 4-7 × 10-10 g m-1 s-1 Pa-1 range. It was observed that the thickness of the films and the protein content affected water vapor permeability, increasing this value at higher levels of thickness.


Assuntos
Filmes Comestíveis , Solanum tuberosum , Amido/química , Solanum tuberosum/química , Vapor , Glicerol/química , Colômbia , Permeabilidade , Resistência à Tração
18.
Food Chem ; 443: 138596, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301566

RESUMO

Enzymatic glycerolysis is a biotechnological process for structuring vegetable oils. This study investigates the kinetics of glycerolysis of peanut oil and explores the potential of the resulting structured oil to enhance the physical stability of water-in-oil emulsions. Using a 1:1 glycerol-to-oil molar ratio and 4 % lipase B from Candida antarctica as a catalyst, the reaction was conducted at 65 °C with stirring at 400 rpm. Acylglyceride fractions changes were quantified through NMR and DSC. Fat crystal formation was observed using scanning electron microscopy. The results revealed a first-order decay pattern, converting triglycerides into monoacylglycerides and diacylglycerides in less than 16 h. Subsequently, water-in-oil emulsions prepared with glycerolized oil showed augmented stability through multiple light scattering techniques and visual assessment. The structured oils effectively delayed phase separation, highlighting the potential of glycerolysis in developing vegetable oil-based emulsions with improved functional properties and reduced saturated fatty acid content.


Assuntos
Óleos de Plantas , Água , Óleos de Plantas/química , Emulsões , Óleos , Glicerol/química , Ácidos Graxos/química
19.
Microb Cell Fact ; 23(1): 63, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402186

RESUMO

BACKGROUND: Yeasts exhibit promising potential for the microbial conversion of crude glycerol, owing to their versatility in delivering a wide range of value-added products, particularly lipids. Sweetwater, a methanol-free by-product of the fat splitting process, has emerged as a promising alternative feedstock for the microbial utilization of crude glycerol. To further optimize sweetwater utilization, we compared the growth and lipid production capabilities of 21 oleaginous yeast strains under different conditions with various glycerol concentrations, sweetwater types and pH. RESULTS: We found that nutrient limitation and the unique carbon composition of sweetwater boosted significant lipid accumulation in several strains, in particular Rhodosporidium toruloides NRRL Y-6987. Subsequently, to decipher the underlying mechanism, the transcriptomic changes of R. toruloides NRRL Y-6987 were further analyzed, indicating potential sugars and oligopeptides in sweetwater supporting growth and lipid accumulation as well as exogenous fatty acid uptake leading to the enhanced lipid accumulation. CONCLUSION: Our comparative study successfully demonstrated sweetwater as a cost-effective feedstock while identifying R. toluroides NRRL Y-6987 as a highly promising microbial oil producer. Furthermore, we also suggested potential sweetwater type and strain engineering targets that could potentially enhance microbial lipid production.


Assuntos
Glicerol , Leveduras , Glicerol/química , Ácidos Graxos/química , Carbono , Biocombustíveis
20.
J Biomater Sci Polym Ed ; 35(7): 1086-1104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401125

RESUMO

Injectable bone substitute (IBS) materials are commonly used to fill irregular-shaped bone voids in non-load-bearing areas and can offer greater utility over those which are in prefabricated powder, granule, or block forms. This work investigates the impact of liquid-to-solid ratio (LSR) on the rheology and cytocompatibility of IBSs formulated from bioactive glass particles and ß-tricalcium phosphate (ß-TCP) in glycerol and poly(ethylene glycol) (PEG). IBS formulations of varying LSR were prepared and packed in 3 cc open-bore syringes and sterilized via gamma irradiation (10 kGy, 25 kGy). Gamma-irradiated formulations with high PEG content required the highest (73 N) mechanical force for injection from syringes. Oscillatory viscosity measurements revealed that the viscosity of samples was directly proportional to glycerol content. PEG and glycerol displayed competing effects on the washout resistance and cohesiveness of samples, which were based on total weight loss in media and Ca2+ ion release, respectively. Cell viability in 24-h extracts of 10 kGy gamma-sterilized and 25 kGy gamma-irradiated samples were 22.94% and 56.53%, respectively. The research highlights the complex interplay of IBS components on IBS rheology and, moreover, the cytotoxicity behaviors of beta-tricalcium phosphate-based injectable bone substitutes by in vitro experiments.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Sobrevivência Celular , Raios gama , Injeções , Teste de Materiais , Polietilenoglicóis , Reologia , Fosfatos de Cálcio/química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Camundongos , Viscosidade , Glicerol/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA