Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dent Res ; 103(6): 631-641, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38491721

RESUMO

Periodontal tissue destruction in periodontitis is a consequence of the host inflammatory response to periodontal pathogens, which could be aggravated in the presence of type 2 diabetes mellitus (T2DM). Accumulating evidence highlights the intricate involvement of macrophage-mediated inflammation in the pathogenesis of periodontitis under both normal and T2DM conditions. However, the underlying mechanism remains elusive. Alpha-2-glycoprotein 1 (AZGP1), a glycoprotein featuring an MHC-I domain, has been implicated in both inflammation and metabolic disorders. In this study, we found that AZGP1 was primarily colocalized with macrophages in periodontitis tissues. AZGP1 was increased in periodontitis compared with controls, which was further elevated when accompanied by T2DM. Adeno-associated virus-mediated overexpression of Azgp1 in the periodontium significantly enhanced periodontal inflammation and alveolar bone loss, accompanied by elevated M1 macrophages and pyroptosis in murine models of periodontitis and T2DM-associated periodontitis, while Azgp1-/- mice exhibited opposite effects. In primary bone marrow-derived macrophages stimulated by lipopolysaccharide (LPS) or LPS and palmitic acid (PA), overexpression or knockout of Azgp1 markedly upregulated or suppressed, respectively, the expression of macrophage M1 markers and key components of the NLR Family Pyrin Domain Containing 3 (NLRP3)/caspase-1 signaling. Moreover, conditioned medium from Azgp1-overexpressed macrophages under LPS or LPS+PA stimulation induced higher inflammatory activation and lower osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). Furthermore, elevated M1 polarization and pyroptosis in macrophages and associated detrimental effects on hPDLSCs induced by Azgp1 overexpression could be rescued by NLRP3 or caspase-1 inhibition. Collectively, our study elucidated that AZGP1 could aggravate periodontitis by promoting macrophage M1 polarization and pyroptosis through the NLRP3/casapse-1 pathway, which was accentuated in T2DM-associated periodontitis. This finding deepens the understanding of AZGP1 in the pathogenesis of periodontitis and suggests AZGP1 as a crucial link mediating the adverse effects of diabetes on periodontal inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Macrófagos , Periodontite , Piroptose , Glicoproteína Zn-alfa-2 , Animais , Humanos , Masculino , Camundongos , Perda do Osso Alveolar/metabolismo , Caspase 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite/metabolismo , Periodontite/imunologia , Transdução de Sinais , Glicoproteína Zn-alfa-2/genética , Glicoproteína Zn-alfa-2/metabolismo
2.
Sci Rep ; 12(1): 9087, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641588

RESUMO

There were limited data on adipose and serum zinc alpha-2-glycoprotein (ZAG) expression and its association with body composition in patients with advanced chronic kidney disease (CKD). This study aimed to quantify adipose and serum ZAG expression and evaluate their association with body composition and its longitudinal change, together with mortality in incident dialysis patients. We performed a single-center prospective cohort study. Patients who were planned for peritoneal dialysis were recruited. ZAG levels were measured from serum sample, subcutaneous and pre-peritoneal fat tissue obtained during peritoneal dialysis catheter insertion. Body composition and functional state were evaluated by bioimpedance spectroscopy and Clinical Frailty Scale respectively at baseline and were repeated 1 year later. Primary outcome was 2-year survival. Secondary outcomes were longitudinal changes of body composition. At baseline, the average adipose and serum ZAG expression was 13.4 ± 130.0-fold and 74.7 ± 20.9 µg/ml respectively. Both adipose and serum ZAG expressions independently predicted adipose tissue mass (ATM) (p = 0.001, p = 0.008, respectively). At 1 year, ATM increased by 3.3 ± 7.4 kg (p < 0.001) while lean tissue mass (LTM) remained similar (p = 0.5). Adipose but not serum ZAG level predicted change in ATM (p = 0.007) and LTM (p = 0.01). Serum ZAG level predicted overall survival (p = 0.005) and risk of infection-related death (p = 0.045) after adjusting for confounders. In conclusion, adipose and serum ZAG levels negatively correlated with adiposity and predicted its longitudinal change of fat and lean tissue mass, whilst serum ZAG predicted survival independent of body mass in advanced CKD patient.


Assuntos
Adiposidade , Caquexia , Diálise Renal , Insuficiência Renal Crônica , Glicoproteína Zn-alfa-2 , Adipocinas , Tecido Adiposo/metabolismo , Caquexia/metabolismo , Humanos , Obesidade/metabolismo , Estudos Prospectivos , Proteínas de Plasma Seminal/metabolismo , Taxa de Sobrevida , Glicoproteína Zn-alfa-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA