Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.585
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667774

RESUMO

Five new biflorane-type diterpenoids, biofloranates E-I (1-5), and two new bicyclic diterpene glycosides, lemnaboursides H-I (6-7), along with the known lemnabourside, were isolated from the South China Sea soft coral Lemnalia bournei. Their chemical structures and stereochemistry were determined based on extensive spectroscopic methods, including time-dependent density functional theory (TDDFT) ECD calculations, as well as a comparison of them with the reported values. The antibacterial activities of the isolated compounds were evaluated against five pathogenic bacteria, and all of these diterpenes and diterpene glycosides showed antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 4 to 64 µg/mL. In addition, these compounds did not exhibit noticeable cytotoxicities on A549, Hela, and HepG2 cancer cell lines, at 20 µM.


Assuntos
Antozoários , Antibacterianos , Bacillus subtilis , Diterpenos , Glicosídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Antozoários/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Staphylococcus aureus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Células HeLa , Linhagem Celular Tumoral , Células Hep G2 , Estrutura Molecular , Células A549 , China
2.
Mar Drugs ; 22(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667788

RESUMO

A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.


Assuntos
Glicosídeos , Leishmania , Poríferos , Poríferos/química , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Leishmania/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Pirrolidinonas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Japão , Concentração Inibidora 50
3.
Nat Commun ; 15(1): 3539, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670975

RESUMO

Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-ß-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.


Assuntos
Benzopiranos , Vias Biossintéticas , Escherichia coli , Engenharia Metabólica , Benzopiranos/metabolismo , Benzopiranos/química , Engenharia Metabólica/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Glicosiltransferases/metabolismo , Metiltransferases/metabolismo , Ácido Gálico/metabolismo , Ácido Gálico/química , Reatores Biológicos , Glicosídeos/biossíntese , Glicosídeos/metabolismo , Glicosídeos/química
4.
Biomolecules ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38672467

RESUMO

Inflammation is a pivotal factor in the development and advancement of conditions like NAFLD and asthma. Diet can affect several phases of inflammation and significantly influence multiple inflammatory disorders. Siraitia grosvenorii, a traditional Chinese edible and medicinal plant, is considered beneficial to health. Flavonoids can suppress inflammatory cytokines, which play a crucial role in regulating inflammation. In the present experiments, kaempferol 3-O-α-L-rhamnoside-7-O-ß-D-xylosyl(1→2)-O-α-L-rhamnoside (SGPF) is a flavonoid glycoside that was first isolated from S. grosvenorii. A series of experimental investigations were carried out to investigate whether the flavonoid component has anti-inflammatory and hepatoprotective effects in this plant. The researchers showed that SGPF has a stronger modulation of protein expression in LPS-induced macrophages (MH-S) and OA-induced HepG2 cells. The drug was dose-dependent on cells, and in the TLR4/NF-κB/MyD88 pathway and Nrf2/HO-1 pathway, SGPF regulated all protein expression. SGPF has a clear anti-inflammatory and hepatoprotective function in inflammatory conditions.


Assuntos
Anti-Inflamatórios , Flavonoides , Glicosídeos , NF-kappa B , Receptor 4 Toll-Like , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Glicosídeos/farmacologia , Glicosídeos/química , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Células Hep G2 , Animais , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Cucurbitaceae/química , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Lipopolissacarídeos/farmacologia , Heme Oxigenase-1/metabolismo
5.
Chem Commun (Camb) ; 60(36): 4838-4841, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619439

RESUMO

Herein, we present an efficient Pd-catalysed method for stereoselective synthesis of chromone C-glycosides from various glycals. We successfully applied this method to various glycals with different protecting groups, yielding the corresponding glycosides in 41-78% yields. Additionally, we investigated the potential of this approach for the late-stage modification of natural products and pharmaceutical compounds linked to glycals, leading to the synthesis of their respective glycosides. Furthermore, we extended our research to gram-scale synthesis and demonstrated its applicability in producing various valuable products, including 2-deoxy-chromone C-glycosides. In summary, our work introduces a novel library of chromone glycosides, which holds promise for advancing drug discovery efforts.


Assuntos
Cromonas , Glicosídeos , Paládio , Paládio/química , Catálise , Glicosídeos/química , Glicosídeos/síntese química , Estereoisomerismo , Cromonas/química , Cromonas/síntese química , Estrutura Molecular , Produtos Biológicos/síntese química , Produtos Biológicos/química
6.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635880

RESUMO

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glicosídeos , Esteroides , Glicosídeos/química , Glicosídeos/síntese química , Glicosídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Camundongos , Animais , Humanos , Teoria da Densidade Funcional , Estrutura Molecular , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Macrófagos/efeitos dos fármacos
7.
Biomed Res Int ; 2024: 5924799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590385

RESUMO

This study accessed the potential antimalarial activity of triterpene glycoside of H. atra through targeting orotidine 5-monophosphate decarboxylase protein (PfOMPDC) in P. falciparum by molecular docking. Nine triterpene glycosides from H. atra extract modeled the structure by the Corina web server and interacted with PfOMPDC protein by using Hex 8.0.0. The docking results were visualized and analyzed by Discovery Studio version 21.1.1. 17-Hydroxyfuscocineroside B showed the lowest binding energy in PfOMPDC interaction, which was -1,098.13 kJ/mol. Holothurin A3, echinoside A, and fuscocineroside C showed low binding energy. Nine triterpene glycosides of H. atra performed interaction with PfOMPDC protein at the same region. Holothurin A1 posed interaction with PfOMPDC protein by 8 hydrogen bonds, 3 hydrophobic interactions, and 8 unfavorable bonds. Several residues were detected in the same active sites of other triterpene glycosides. Residue TYR111 was identified in all triterpene glycoside complexes, except holothurin A3 and calcigeroside B. In summary, the triterpene glycoside of H. atra is potentially a drug candidate for malaria therapeutic agents. In vitro and in vivo studies were required for further investigation.


Assuntos
Carboxiliases , Glicosídeos Cardíacos , Triterpenos , Uridina/análogos & derivados , Simulação de Acoplamento Molecular , Glicosídeos/química , Triterpenos/química
8.
J Agric Food Chem ; 72(14): 8269-8283, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557049

RESUMO

Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.


Assuntos
Glicosídeos , Urticaceae , Glicosídeos/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Flavonoides , Flavonóis , Plantas/metabolismo , Difosfato de Uridina , Perfilação da Expressão Gênica , Urticaceae/metabolismo , Açúcares
9.
Int J Biol Macromol ; 267(Pt 2): 131588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615860

RESUMO

Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.


Assuntos
Alginatos , Glicosídeos , Nanopartículas , Selênio , Alginatos/química , Selênio/química , Nanopartículas/química , Glicosídeos/química , Folhas de Planta/química , Muramidase/química , Tensoativos/química , Estabilidade de Medicamentos
10.
Phytochemistry ; 222: 114094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604325

RESUMO

Safflopentsides A-C (1-3), three highly oxidized rearranged derivatives of quinochalcone C-glycosides, were isolated from the safflower yellow pigments. Their structures were determined based on a detailed spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR), and the absolute configurations were confirmed by the comparison of experimental ECD spectra with calculated ECD spectra. Compounds 1-3 have an unprecedented cyclopentenone or cyclobutenolide ring A containing C-glucosyl group, respectively. The plausible biosynthetic pathways of compounds have been presented. At 10 µM, 2 showed strong inhibitory activity against rat cerebral cortical neurons damage induced by glutamate and oxygen sugar deprivation.


Assuntos
Carthamus tinctorius , Glicosídeos , Oxirredução , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Animais , Carthamus tinctorius/química , Ratos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Relação Estrutura-Atividade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Relação Dose-Resposta a Droga , Córtex Cerebral/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Chalconas/isolamento & purificação
11.
Carbohydr Res ; 539: 109106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640704

RESUMO

Activation of glycosyl methylpropiolates by TfOH was investigated. Armed and superarmed glycosyl donors can be activated by use of 0.2 equivalent TfOH whereas 1.0 equivalent of TfOH was required for the activation of the disarmed glycosyl donors. All the glycosidations gave very good yields. The method is suitable for synthesis of glycosides and disaccharides and it may result in the hydrolysis of the interglycosidic bond if the sugar at the non-reducing end is armed or superarmed. These problems are not seen when gold-catalyzed activation procedures are invoked for the activation of glycosyl alkynoates.


Assuntos
Glicosídeos , Glicosilação , Glicosídeos/química , Glicosídeos/síntese química , Dissacarídeos/química , Dissacarídeos/síntese química , Catálise
12.
Chem Biodivers ; 21(4): e202301786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466126

RESUMO

SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 µg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 µg/ml), and Arabincoside B (IC50=53.31 µg/ml).


Assuntos
Apocynaceae , COVID-19 , Proteases 3C de Coronavírus , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , Apocynaceae/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Glicosídeos/farmacologia , Glicosídeos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pregnanos/farmacologia , Pregnanos/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo
13.
J Nat Prod ; 87(4): 1084-1091, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517947

RESUMO

Investigation of the secondary metabolites of Streptomyces virginiae CMB-CA091 isolated from the quartz-rich (tepui) soil of a cave in Venezuela yielded two new dimeric phenazine glycosides, tepuazines A and B (1 and 2); three new monomeric phenazine glycosides, tepuazines C-E (3-5); and a series of known analogues, baraphenazine G (6), phenazinolin D (7), izumiphenazine C (8), 4-methylaminobenzoyl-l-rhamnopyranoside (9), and 2-acetamidophenol (10). Structures were assigned to 1-10 on the basis of detailed spectroscopic analysis and biosynthetic considerations, with 1 and 2 featuring a rare 2-oxabicyclo[3.3.1]nonane-like ring C/D bridge shared with only a handful of known Streptomyces natural products. We propose a plausible convergent biosynthetic relationship linking all known members of this structure class that provides a rationale for the observed ring C/D configuration.


Assuntos
Glicosídeos , Fenazinas , Microbiologia do Solo , Streptomyces , Streptomyces/química , Fenazinas/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Estrutura Molecular , Venezuela , Cavernas , Quartzo/química
14.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542958

RESUMO

This study unveils an innovative method for synthesizing coumarin S-glycosides, employing original biocatalysts able to graft diverse carbohydrate structures onto 7-mercapto-4-methyl-coumarin in one-pot reactions. The fluorescence properties of the generated thio-derivatives were assessed, providing valuable insights into their potential applications in biological imaging or sensing. In addition, the synthesized compounds exhibited no cytotoxicity across various human cell lines. This research presents a promising avenue for the development of coumarin S-glycosides, paving the way for their application in diverse biomedical research areas.


Assuntos
Cumarínicos , Glicosídeos , Humanos , Glicosídeos/química , Cumarínicos/química
15.
J Chem Ecol ; 50(3-4): 185-196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441803

RESUMO

Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.


Assuntos
Glicosídeos , Pepinos-do-Mar , Triterpenos , Vísceras , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Glicosídeos/química , Glicosídeos/toxicidade , Glicosídeos/metabolismo , Vísceras/química , Vísceras/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/metabolismo , Pepinos-do-Mar/química , Embrião não Mamífero/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química
16.
Org Lett ; 26(10): 2103-2107, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38443201

RESUMO

A chemical synthesis of a unique nanosaccharide fragment from Helicobacter pylori lipopolysaccharide was achieved via a convergent glycosylation method. Challenges involved in the synthesis include the highly stereoselective construction of ß-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and two 1,2-cis-glycosidic linkages, as well as the formation of a branched 2,7-disubstituted heptose subunit. Hydrogen-bond mediated aglycone delivery strategy and benzoyl-directing remote participation effect were employed, respectively, for the efficient generation of the desired ß-Kdo glycoside and 1,2-cis-α-l-fucoside/d-glucoside. Moreover, the key branched framework was successfully established through a [(7 + 1) + 1] assembly approach involving the stepwise glycosylation of the heptasaccharide alcohol with two monosaccharide donors. The synthesized 1 containing a propylamine linker at the reducing end can be covalently bound to a carrier protein for further immunological studies.


Assuntos
Glicosídeos , Lipopolissacarídeos , Lipopolissacarídeos/química , Glicosídeos/química
17.
J Ethnopharmacol ; 328: 118051, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38493905

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY: The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS: Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS: This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-ß-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION: In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.


Assuntos
Éteres Metílicos , Morinda , Rubiaceae , Humanos , Camundongos , Animais , Morinda/química , Rubiaceae/química , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Quercetina/análise , Raízes de Plantas/química , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Glicosídeos/química , Inflamação/tratamento farmacológico , Éteres Metílicos/análise , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade
18.
J Phys Chem B ; 128(10): 2317-2325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482666

RESUMO

Two disaccharides, methyl ß-d-galactopyranosyl-(1→4)-α-d-glucopyranoside (1) and methyl ß-d-galactopyranosyl-(1→4)-3-deoxy-α-d-ribo-hexopyranoside (3), were prepared with selective 13C-enrichment to allow measurement of six trans-O-glycosidic J-couplings (2JCOC, 3JCOCH, and 3JCOCC) in each compound. Density functional theory (DFT) was used to parameterize Karplus-like equations that relate these J-couplings to either ϕ or ψ. MA'AT analysis was applied to both linkages to determine mean values of ϕ and ψ in each disaccharide and their associated circular standard deviations (CSDs). Results show that deoxygenation at C3 of 1 has little effect on both the mean values and librational motions of the linkage torsion angles. This finding implies that, if inter-residue hydrogen bonding between O3H and O5' of 1 is present in aqueous solution and persistent, it plays little if any role in dictating preferred linkage conformation. Hydrogen bonding may lower the energy of the preferred linkage geometry but does not determine it to any appreciable extent. Aqueous 1-µs MD simulation supports this conclusion and also indicates greater conformational flexibility in deoxydisaccharide 3 in terms of sampling several, conformationally distinct, higher-energy conformers in solution. The populations of these latter conformers are low (3-14%) and could not be validated by MA'AT analysis. If the MD model is correct, however, C3 deoxygenation does enable conformational sampling over a wider range of ϕ/ψ values, but linkage conformation in the predominant conformer is essentially identical in both 1 and 3.


Assuntos
Dissacarídeos , Glicosídeos , Dissacarídeos/química , Ligação de Hidrogênio , Conformação Molecular , Glicosídeos/química , Simulação por Computador , Água , Configuração de Carboidratos
19.
Phytochemistry ; 222: 114071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552709

RESUMO

Eight pairs of dihydrohomoisoflavonoids (1-8), including four pairs of enantiomeric aglycones [(R,S)-portulacanones B (1) and C (2) and (R,S)-oleracones C (3) and Q (4)] and four pairs of epimeric glycosides [portulacasides A-D and epiportulacasides A-D (5-8)], were obtained from Portulaca oleracea L. Among them, (R,S)-oleracone Q (4) and four pairs of epimeric glycosides (5-8) were reported for the first time. The 50% EtOH fraction from the 70% EtOH extract prevented HepG2 human liver cancer cell damage induced by N-acetyl-p-aminophenol (APAP), and the cell survival rate was 62.3%. Portulacaside B (6a), which was isolated from the 50% EtOH fraction, exhibited hepatoprotective and anti-inflammatory effects. The compound increased the survival rate of APAP-damaged HepG2 human liver cancer cells from 40.0% to 51.2% and reduced nitric oxide production in RAW 264.7 macrophages, resulting in an inhibitory rate of 46.8%.


Assuntos
Sobrevivência Celular , Portulaca , Humanos , Portulaca/química , Camundongos , Animais , Células Hep G2 , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Óxido Nítrico/biossíntese , Óxido Nítrico/antagonistas & inibidores , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Acetaminofen/farmacologia , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação
20.
J Mol Biol ; 436(9): 168547, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508304

RESUMO

Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+ß subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2ß2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).


Assuntos
Proteínas de Bactérias , Deinococcus , Flavonoides , Genes Bacterianos , Família Multigênica , Xantonas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Deinococcus/genética , Deinococcus/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Glicosídeos/metabolismo , Glicosídeos/química , Glicosilação , Modelos Moleculares , Xantonas/metabolismo , Xantonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA