Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.449
Filtrar
1.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720342

RESUMO

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Assuntos
Neoplasias Encefálicas , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Supressoras Mieloides/imunologia , Glioma/imunologia , Glioma/terapia , Glioma/patologia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia
2.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725860

RESUMO

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Assuntos
Glioblastoma , Fator de Transcrição STAT3 , Transdução de Sinais , Tetraspaninas , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Animais , Proliferação de Células/genética , Exossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos
3.
Front Immunol ; 15: 1388769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726003

RESUMO

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Organoides/imunologia , MicroRNAs/genética , Microambiente Tumoral/imunologia , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
4.
Folia Neuropathol ; 62(1): 96-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741436

RESUMO

Gliosarcoma (GS) is a rare variant of IDH-wildtype glioblastoma. It is classified as grade 4 in the latest WHO CNS classification of both glial and mesenchymal components. Gliosarcoma may arise de novo or secondary from glioblastoma. It occurs in up to 2% of patients diagnosed with glioblastoma. We present a case report of a 51-year-old patient who was initially diagnosed with glioblastoma multiforme, which transformed into secondary gliosarcoma with an osteosarcoma component 16 months after the initial diagnosis. We believe that increasing reporting of secondary gliosarcoma (sGS) will be helpful in understanding, diagnosing and providing more effective treatment for this cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gliossarcoma , Isocitrato Desidrogenase , Osteossarcoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Gliossarcoma/genética , Gliossarcoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , Pessoa de Meia-Idade , Isocitrato Desidrogenase/genética , Masculino
5.
BMC Cancer ; 24(1): 607, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769480

RESUMO

BACKGROUND: Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS: Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS: Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.


Assuntos
Glioblastoma , Análise de Célula Única , Transcriptoma , Humanos , Análise de Célula Única/métodos , Glioblastoma/genética , Glioblastoma/patologia , Perfilação da Expressão Gênica/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732140

RESUMO

Glioblastoma Multiforme is a brain tumor distinguished by its aggressiveness. We suggested that this aggressiveness leads single-cell RNA-sequence data (scRNA-seq) to span a representative portion of the cancer attractors domain. This conjecture allowed us to interpret the scRNA-seq heterogeneity as reflecting a representative trajectory within the attractor's domain. We considered factors such as genomic instability to characterize the cancer dynamics through stochastic fixed points. The fixed points were derived from centroids obtained through various clustering methods to verify our method sensitivity. This methodological foundation is based upon sample and time average equivalence, assigning an interpretative value to the data cluster centroids and supporting parameters estimation. We used stochastic simulations to reproduce the dynamics, and our results showed an alignment between experimental and simulated dataset centroids. We also computed the Waddington landscape, which provided a visual framework for validating the centroids and standard deviations as characterizations of cancer attractors. Additionally, we examined the stability and transitions between attractors and revealed a potential interplay between subtypes. These transitions might be related to cancer recurrence and progression, connecting the molecular mechanisms of cancer heterogeneity with statistical properties of gene expression dynamics. Our work advances the modeling of gene expression dynamics and paves the way for personalized therapeutic interventions.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Análise de Célula Única , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Análise de Célula Única/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Perfilação da Expressão Gênica/métodos , Instabilidade Genômica , Análise de Sequência de RNA/métodos , Análise por Conglomerados
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732135

RESUMO

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Assuntos
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurônico , Hidrogéis , Oligopeptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inibidores , Hidrogéis/química , Linhagem Celular Tumoral , Ácido Hialurônico/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo
8.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732975

RESUMO

Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.


Assuntos
Técnicas Biossensoriais , Glioblastoma , Dispositivos Lab-On-A-Chip , Microambiente Tumoral , Glioblastoma/patologia , Humanos , Técnicas Biossensoriais/métodos , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Sistemas Microfisiológicos
10.
Nat Commun ; 15(1): 3905, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724522

RESUMO

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Cromatina , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Heterogeneidade Genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Elementos Facilitadores Genéticos/genética , Cromossomos Humanos/genética
11.
Sci Rep ; 14(1): 10692, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724609

RESUMO

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Ontologia Genética , Biologia Computacional/métodos
12.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725030

RESUMO

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Camundongos Nus , Apoptose
13.
BMC Cancer ; 24(1): 612, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773447

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS: A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS: From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION: We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Biologia Computacional , Glioblastoma , RNA Mensageiro , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapas de Interação de Proteínas , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
14.
Theranostics ; 14(7): 2835-2855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773970

RESUMO

Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Exossomos , Glioblastoma , Temozolomida , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Animais , Exossomos/metabolismo , Exossomos/genética , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Carcinogênese/genética , Carcinogênese/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701938

RESUMO

The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Proteína HMGB1 , Microambiente Tumoral , Humanos , Proteína HMGB1/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/imunologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Animais , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proliferação de Células
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718847

RESUMO

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Assuntos
Aminoácidos de Cadeia Ramificada , Apoptose , GTP Fosfo-Hidrolases , Glioblastoma , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , GTP Fosfo-Hidrolases/metabolismo , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Linhagem Celular Tumoral , Camundongos , Proteínas Mitocondriais/metabolismo , Ubiquitina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Ubiquitinação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
18.
Bull Exp Biol Med ; 176(5): 697-702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724814

RESUMO

One of the key problems of glioblastoma treatment is the low effectiveness of chemotherapeutic drugs. Incorporation of doxorubicin into PLGA nanoparticles allows increasing the antitumor effect of the cytostatics against experimental rat glioblastoma 101.8. Animal survival, tumor volume, and oncogene expression in tumor cells were compared after early (days 2, 5, and 8 after tumor implantation) and late (days 8, 11, and 14) start of the therapy. At late start, a significant increase in the expression of oncogenes Gdnf, Pdgfra, and Melk and genes determining the development of multidrug resistance Abcb1b and Mgmt was revealed. At early start of therapy, only the expression of oncogenes Gdnf, Pdgfra, and Melk was enhanced. Early start of treatment prolonged the survival time and increased tumor growth inhibition by 141.4 and 95.7%, respectively, in comparison with the untreated group; these differences were not observed in the group with late start of therapy. The results indicate that the time of initiation of therapy is a critical parameter affecting the antitumor efficacy of DOX-PLGA.


Assuntos
Doxorrubicina , Glioblastoma , Nanopartículas , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ratos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Masculino , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ácido Poliglicólico/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
19.
Sci Rep ; 14(1): 10985, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744979

RESUMO

Several prognostic factors are known to influence survival for patients treated with IDH-wildtype glioblastoma, but unknown factors may remain. We aimed to investigate the prognostic implications of early postoperative MRI findings. A total of 187 glioblastoma patients treated with standard therapy were consecutively included. Patients either underwent a biopsy or surgery followed by an early postoperative MRI. Progression-free survival (PFS) and overall survival (OS) were analysed for known prognostic factors and MRI-derived candidate factors: resection status as defined by the response assessment in neuro-oncology (RANO)-working group (no contrast-enhancing residual tumour, non-measurable contrast-enhancing residual tumour, or measurable contrast-enhancing residual tumour) with biopsy as reference, contrast enhancement patterns (no enhancement, thin linear, thick linear, diffuse, nodular), and the presence of distant tumours. In the multivariate analysis, patients with no contrast-enhancing residual tumour or non-measurable contrast-enhancing residual tumour on the early postoperative MRI displayed a significantly improved progression-free survival compared with patients receiving only a biopsy. Only patients with non-measurable contrast-enhancing residual tumour showed improved overall survival in the multivariate analysis. Contrast enhancement patterns were not associated with survival. The presence of distant tumours was significantly associated with both poor progression-free survival and overall survival and should be considered incorporated into prognostic models.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Adulto , Neoplasia Residual/diagnóstico por imagem , Período Pós-Operatório , Intervalo Livre de Progressão
20.
J Transl Med ; 22(1): 419, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702818

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Assuntos
Apoptose , Proliferação de Células , Glioblastoma , Mitocôndrias , Biogênese de Organelas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA