Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neuroimage ; 225: 117463, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075559

RESUMO

The brain undergoes a protracted, metabolically expensive maturation process from childhood to adulthood. Therefore, it is crucial to understand how network cost is distributed among different brain systems as the brain matures. To address this issue, here we examined developmental changes in wiring cost and brain network topology using resting-state functional magnetic resonance imaging (rsfMRI) data longitudinally collected in awake rats from the juvenile age to adulthood. We found that the wiring cost increased in the vast majority of cortical connections but decreased in most subcortico-subcortical connections. Importantly, the developmental increase in wiring cost was dominantly driven by long-range cortical, but not subcortical connections, which was consistent with more pronounced increase in network integration in the cortical network. These results collectively indicate that there is a non-uniform distribution of network cost as the brain matures, and network resource is dominantly consumed for the development of the cortex, but not subcortex from the juvenile age to adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/crescimento & desenvolvimento , Neuroimagem Funcional , Globo Pálido/diagnóstico por imagem , Globo Pálido/crescimento & desenvolvimento , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Hipotálamo/diagnóstico por imagem , Hipotálamo/crescimento & desenvolvimento , Estudos Longitudinais , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Ratos , Descanso , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/crescimento & desenvolvimento , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento
2.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707082

RESUMO

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Assuntos
Orientação de Axônios , Células-Tronco Neurais/citologia , Neuroglia/citologia , Animais , Axônios/metabolismo , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Espinhas Dendríticas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Globo Pálido/citologia , Globo Pálido/crescimento & desenvolvimento , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Tratos Piramidais/citologia , Tratos Piramidais/crescimento & desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
Brain ; 142(10): 2965-2978, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31412107

RESUMO

Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans.


Assuntos
Globo Pálido/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Putamen/crescimento & desenvolvimento , Adolescente , Adulto , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Diferenciação Celular/genética , Pré-Escolar , Embrião de Mamíferos/metabolismo , Feminino , Globo Pálido/metabolismo , Globo Pálido/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Mutação , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Putamen/metabolismo , Putamen/fisiopatologia , Telencéfalo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos
4.
Schizophr Res ; 213: 96-106, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857872

RESUMO

The fast-spiking parvalbumin (PV) interneurons play a critical role in neural circuit activity and dysfunction of these cells has been implicated in the cognitive deficits typically observed in schizophrenia patients. Due to the high metabolic demands of PV neurons, they are particularly susceptible to oxidative stress. Given the extant literature exploring the pathological effects of oxidative stress on PV cells in cortical regions linked to schizophrenia, we decided to investigate whether PV neurons in other select brain regions, including sub-cortical structures, may be differentially affected by redox dysregulation induced oxidative stress during neurodevelopment in mice with a genetically compromised glutathione synthesis (Gclm KO mice). Our analyses revealed a spatio-temporal sequence of PV cell deficit in Gclm KO mice, beginning with the thalamic reticular nucleus at postnatal day (P) 20 followed by a PV neuronal deficit in the amygdala at P40, then in the lateral globus pallidus and the ventral hippocampus Cornu Ammonis 3 region at P90 and finally the anterior cingulate cortex at P180. We suggest that PV neurons in different brain regions are developmentally susceptible to oxidative stress and that anomalies in the neurodevelopmental calendar of metabolic regulation can interfere with neural circuit maturation and functional connectivity contributing to the emergence of developmental psychopathology.


Assuntos
Tonsila do Cerebelo , Globo Pálido , Giro do Cíngulo , Hipocampo , Interneurônios/metabolismo , Rede Nervosa , Oxirredução , Estresse Oxidativo/fisiologia , Parvalbuminas , Esquizofrenia/metabolismo , Núcleos Talâmicos , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/metabolismo , Animais , Modelos Animais de Doenças , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/metabolismo , Glutamato-Cisteína Ligase/genética , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Núcleos Talâmicos/crescimento & desenvolvimento , Núcleos Talâmicos/metabolismo
5.
J Neurosci ; 39(10): 1892-1909, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626701

RESUMO

Emerging studies are providing compelling evidence that the pathogenesis of Huntington's disease (HD), a neurodegenerative disorder with frequent midlife onset, encompasses developmental components. Moreover, our previous studies using a hypomorphic model targeting huntingtin during the neurodevelopmental period indicated that loss-of-function mechanisms account for this pathogenic developmental component (Arteaga-Bracho et al., 2016). In the present study, we specifically ascertained the roles of subpallial lineage species in eliciting the previously observed HD-like phenotypes. Accordingly, we used the Cre-loxP system to conditionally ablate the murine huntingtin gene (Httflx) in cells expressing the subpallial patterning markers Gsx2 (Gsx2-Cre) or Nkx2.1 (Nkx2.1-Cre) in Httflx mice of both sexes. These genetic manipulations elicited anxiety-like behaviors, hyperkinetic locomotion, age-dependent motor deficits, and weight loss in both Httflx;Gsx2-Cre and Httflx;Nkx2.1-Cre mice. In addition, these strains displayed unique but complementary spatial patterns of basal ganglia degeneration that are strikingly reminiscent of those seen in human cases of HD. Furthermore, we observed early deficits of somatostatin-positive and Reelin-positive interneurons in both Htt subpallial null strains, as well as early increases of cholinergic interneurons, Foxp2+ arkypallidal neurons, and incipient deficits with age-dependent loss of parvalbumin-positive neurons in Httflx;Nkx2.1-Cre mice. Overall, our findings indicate that selective loss-of-huntingtin function in subpallial lineages differentially disrupts the number, complement, and survival of forebrain interneurons and globus pallidus GABAergic neurons, thereby leading to the development of key neurological hallmarks of HD during adult life. Our findings have important implications for the establishment and deployment of neural circuitries and the integrity of network reserve in health and disease.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a progressive degenerative disorder caused by aberrant trinucleotide expansion in the huntingtin gene. Mechanistically, this mutation involves both loss- and gain-of-function mechanisms affecting a broad array of cellular and molecular processes. Although huntingtin is widely expressed during adult life, the mutant protein only causes the demise of selective neuronal subtypes. The mechanisms accounting for this differential vulnerability remain elusive. In this study, we have demonstrated that loss-of-huntingtin function in subpallial lineages not only differentially disrupts distinct interneuron species early in life, but also leads to a pattern of neurological deficits that are reminiscent of HD. This work suggests that early disruption of selective neuronal subtypes may account for the profiles of enhanced regional cellular vulnerability to death in HD.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteína Huntingtina/fisiologia , Doença de Huntington/fisiopatologia , Interneurônios/fisiologia , Neurônios/fisiologia , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/patologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/patologia , Feminino , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/patologia , Proteína Huntingtina/genética , Doença de Huntington/patologia , Doença de Huntington/psicologia , Interneurônios/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/crescimento & desenvolvimento , Córtex Motor/patologia , Neurônios/ultraestrutura , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/patologia , Proteína Reelina
6.
J Magn Reson Imaging ; 49(6): 1600-1609, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30569483

RESUMO

BACKGROUND: Quantitative susceptibility mapping (QSM) is emerging as a technique that quantifies the paramagnetic nonheme iron in brain tissue. Brain iron quantification during early development provides insights into the underlying mechanism of brain maturation. PURPOSE: To quantify the spatiotemporal variations of brain iron-related magnetic susceptibility in deep gray matter nuclei during early development by using QSM. STUDY TYPE: Retrospective. SUBJECTS: Eighty-seven infants and children aged 1 month to 6 years. FIELD STRENGTH/SEQUENCE: Enhanced T2 *-weighted angiography using a 3D gradient-echo sequence at 3.0T. ASSESSMENT: QSM was calculated by modified sophisticated harmonic artifact reduction for phase data and sparse linear equations and sparse least squares-based algorithm. Means of susceptibility in deep gray matter nuclei (caudate nucleus, putamen, globus pallidus, thalamus) relative to that in splenium of corpus callosum were measured. STATISTICAL TESTS: Relationships of mean susceptibility with age and referenced iron concentration were tested by Pearson correlation. Differences of mean susceptibility between the selected nuclei in each age group were compared by one-way analysis of variance (ANOVA) and Fisher's Linear Significant Difference (LSD) test. RESULTS: Positive correlations of susceptibility with both referenced iron concentration and age were found (P < 0.0001); particularly, globus pallidus showed the highest correlation with age (correlation coefficient, 0.882; slope, 1.203; P < 0.001) and greatest susceptibility (P < 0.05) among the selected nuclei. DATA CONCLUSION: QSM allows the feasible quantification of iron deposition in deep gray matter nuclei in infants and young children, which exhibited gradual accumulation at different speeds. The fastest and highest iron accumulation was observed in the globus pallidus with increasing age during early development. LEVEL OF EVIDENCE: 4 Technical Efficacy:Stage 2 J. Magn. Reson. Imaging 2018.


Assuntos
Mapeamento Encefálico , Substância Cinzenta/diagnóstico por imagem , Ferro/metabolismo , Imageamento por Ressonância Magnética , Fatores Etários , Algoritmos , Artefatos , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/crescimento & desenvolvimento , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Masculino , Variações Dependentes do Observador , Putamen/diagnóstico por imagem , Putamen/crescimento & desenvolvimento , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento
7.
Brain Struct Funct ; 222(9): 4089-4110, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28608288

RESUMO

Previous studies have suggested that the neurokinin-1 receptor (NK-1R) expressing neurons in the globus pallidus (GP) receive substance P (SP), presumably released by axon collaterals of striatal direct neurons. However, the effect of SP on the GP remains unclear. In this study, we identified that the SP-responsive cells comprise a highly specific cell type in the GP with regard to immunofluorescence, electrophysiology, and projection properties. Morphologically, NK-1R-immunoreactive neurons occasionally co-expressed parvalbumin (PV) and/or Lim-homeobox 6 (Lhx6), but not Forkhead box protein P2 (FoxP2), which is mainly expressed by arkypallidal neurons. Retrograde tracing experiments also showed that some of GP neurons projecting to the subthalamic nucleus (namely prototypic neurons) expressed NK-1R as well as Lhx6 and/or PV, but not FoxP2. In vitro electrophysiological study revealed that, among 48 GP neurons, the SP agonist induced inward current in 21 neurons. The response was prevented by bath application of the NK-1R antagonist. Based on the firing properties, 92 recorded GP neurons were classified into three distinct types, i.e., CL1, 2, and 3. Interestingly, all the SP-responsive neurons were found to be in CL2 and CL3 types, but not in CL1. Moreover, active and passive membrane properties of the neurons in those clusters and immunofluorescent identification suggested that CL1 and CL2/3 could be considered as arkypallidal and prototypic neurons, respectively. Therefore, SP-responsive neurons were one of the populations of prototypic neurons based on both anatomical and electrophysiological results. Altogether, the striatal direct pathway neurons could affect the indirect pathway in the way of prototypic neurons, via the action of SP to NK-1R.


Assuntos
Globo Pálido/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Substância P/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Toxina da Cólera/metabolismo , Colina O-Acetiltransferase/metabolismo , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Feminino , Globo Pálido/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Neurotransmissores/farmacologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Estimulação Física , Receptores da Neurocinina-1/metabolismo
8.
Neuroimage Clin ; 8: 170-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106541

RESUMO

Autism Spectrum Disorder (ASD) is a clinically diagnosed, heterogeneous, neurodevelopmental condition, whose underlying causes have yet to be fully determined. A variety of studies have investigated either cortical, subcortical, or cerebellar anatomy in ASD, but none have conducted a complete examination of all neuroanatomical parameters on a single, large cohort. The current study provides a comprehensive examination of brain development of children with ASD between the ages of 4 and 18 years who are carefully matched for age and sex with typically developing controls at a ratio of one-to-two. Two hundred and ten magnetic resonance images were examined from 138 Control (116 males and 22 females) and 72 participants with ASD (61 males and 11 females). Cortical segmentation into 78 brain-regions and 81,924 vertices was conducted with CIVET which facilitated a region-of-interest- (ROI-) and vertex-based analysis, respectively. Volumes for the cerebellum, hippocampus, striatum, pallidum, and thalamus and many associated subregions were derived using the MAGeT Brain algorithm. The study reveals cortical, subcortical and cerebellar differences between ASD and Control group participants. Diagnosis, diagnosis-by-age, and diagnosis-by-sex interaction effects were found to significantly impact total brain volume but not total surface area or mean cortical thickness of the ASD participants. Localized (vertex-based) analysis of cortical thickness revealed no significant group differences, even when age, age-range, and sex were used as covariates. Nonetheless, the region-based cortical thickness analysis did reveal regional changes in the left orbitofrontal cortex and left posterior cingulate gyrus, both of which showed reduced age-related cortical thinning in ASD. Our finding of region-based differences without significant vertex-based results likely indicates non-focal effects spanning the entirety of these regions. The hippocampi, thalamus, and globus pallidus, were smaller in volume relative to total cerebrum in the ASD participants. Various sub-structures showed an interaction of diagnosis-by-age, diagnosis-by-sex, and diagnosis-by-age-range, in the case where age was divided into childhood (age < 12) and adolescence (12 < age < 18). This is the most comprehensive imaging-based neuro-anatomical pediatric and adolescent ASD study to date. These data highlight the neurodevelopmental differences between typically developing children and those with ASD, and support aspects of the hypothesis of abnormal neuro-developmental trajectory of the brain in ASD.


Assuntos
Transtorno do Espectro Autista/patologia , Cerebelo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Globo Pálido/crescimento & desenvolvimento , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Tálamo/crescimento & desenvolvimento , Adolescente , Cerebelo/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Globo Pálido/patologia , Humanos , Masculino , Tálamo/patologia
9.
Neuron ; 86(2): 501-13, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25843402

RESUMO

Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Globo Pálido/citologia , Globo Pálido/crescimento & desenvolvimento , Movimento/fisiologia , Neurônios/classificação , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação/fisiologia , Animais , Linhagem da Célula/fisiologia , Encefalinas/metabolismo , Globo Pálido/embriologia , Camundongos , Precursores de Proteínas/metabolismo , Curva ROC , Fator Nuclear 1 de Tireoide , Ácido gama-Aminobutírico/metabolismo
10.
World Neurosurg ; 83(4): 438-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25698522

RESUMO

OBJECTIVE: It is unclear how brain growth with age affects electrode position in relation to target for children undergoing deep brain stimulation surgery. We aimed to model projected change in the distance between the entry point of the electrode into the brain and target during growth to adulthood. METHODS: Modeling was performed using a neurodevelopmental magnetic resonance imaging database of age-specific templates in 6-month increments from 4 to 18 years of age. Coordinates were chosen for a set of entry points into both cerebral hemispheres and target positions within the globus pallidus internus on the youngest magnetic resonance imaging template. The youngest template was nonlinearly registered to the older templates, and the transformations generated by these registrations were applied to the original coordinates of entry and target positions, mapping these positions with increasing age. Euclidean geometry was used to calculate the distance between projected electrode entry and target with increasing age. RESULTS: A projected increase in distance between entry point and target of 5-10 mm was found from age 4 to 18 years. Most change appeared to occur before 7 years of age, after which minimal change in distance was found. CONCLUSIONS: Electrodes inserted during deep brain stimulation surgery are tethered at the point of entry to the skull. Brain growth, which could result in a relative retraction with respect to the original target position, appears to occur before 7 years of age, suggesting careful monitoring is needed for children undergoing implantation before this age. Reengineering of electrode design could avoid reimplantation surgery in young children undergoing deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido , Adolescente , Idade de Início , Envelhecimento , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos de Coortes , Distonia/terapia , Eletrodos Implantados , Feminino , Lateralidade Funcional , Globo Pálido/anatomia & histologia , Globo Pálido/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Procedimentos Neurocirúrgicos/métodos
11.
JAMA Neurol ; 71(10): 1266-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111045

RESUMO

IMPORTANCE: The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders. OBJECTIVE: To assess structural growth trajectories and rates of change in the whole brain and regions of interest in infants during the first 3 months after birth. DESIGN, SETTING, AND PARTICIPANTS: Serial structural T1-weighted and/or T2-weighted magnetic resonance images were obtained for 211 time points from 87 healthy term-born or term-equivalent preterm-born infants, aged 2 to 90 days, between October 5, 2007, and June 12, 2013. MAIN OUTCOMES AND MEASURES: We segmented whole-brain and multiple subcortical regions of interest using a novel application of Bayesian-based methods. We modeled growth and rate of growth trajectories nonparametrically and assessed left-right asymmetries and sexual dimorphisms. RESULTS: Whole-brain volume at birth was approximately one-third of healthy elderly brain volume, and did not differ significantly between male and female infants (347 388 mm3 and 335 509 mm3, respectively, P = .12). The growth rate was approximately 1%/d, slowing to 0.4%/d by the end of the first 3 months, when the brain reached just more than half of elderly adult brain volume. Overall growth in the first 90 days was 64%. There was a significant age-by-sex effect leading to widening separation in brain sizes with age between male and female infants (with male infants growing faster than females by 200.4 mm3/d, SE = 67.2, P = .003). Longer gestation was associated with larger brain size (2215 mm3/d, SE = 284, P = 4×10-13). The expected brain size of an infant born one week earlier than average was 5% smaller than average; at 90 days it will not have caught up, being 2% smaller than average. The cerebellum grew at the highest rate, more than doubling in 90 days, and the hippocampus grew at the slowest rate, increasing by 47% in 90 days. There was left-right asymmetry in multiple regions of interest, particularly the lateral ventricles where the left was larger than the right by 462 mm3 on average (approximately 5% of lateral ventricular volume at 2 months). We calculated volume-by-age percentile plots for assessing individual development. CONCLUSIONS AND RELEVANCE: Normative trajectories for early postnatal brain structural development can be determined from magnetic resonance imaging and could be used to improve the detection of deviant maturational patterns indicative of neurodevelopmental disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil , Idade Gestacional , Tonsila do Cerebelo/crescimento & desenvolvimento , Tronco Encefálico/crescimento & desenvolvimento , Núcleo Caudado/crescimento & desenvolvimento , Cerebelo/crescimento & desenvolvimento , Estudos de Coortes , Feminino , Globo Pálido/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Ventrículos Laterais/crescimento & desenvolvimento , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Putamen/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento
12.
Dev Cell ; 30(2): 123-36, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25017692

RESUMO

Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing, activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging, coupled with gene expression analyses and Notch invalidations, to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation. Dorsomedial aNSCs derive from the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the contrary, the lateral aNSC population is formed by stepwise addition at the pallial edge from a discrete neuroepithelial progenitor pool of the posterior telencephalic roof, activated at postembryonic stages and persisting lifelong. This dual origin of the pallial germinal zone allows the temporally organized building of pallial territories as a patchwork of juxtaposed compartments.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula , Globo Pálido/citologia , Células-Tronco Neurais/citologia , Células-Tronco Adultas/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Globo Pálido/embriologia , Globo Pálido/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
BMC Pediatr ; 14: 84, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678975

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is a useful tool to study brain growth and organization in preterm neonates for clinical and research purposes, but its practicality can be limited by time and medical constraints. The aim of this study was to determine if MRI relaxometry of the deep nuclei, as opposed to white matter, would reflect the influence of gestational age at birth on structures essential to motor development, regardless of postnatal age at the time of imaging. RESULTS: This was a prospective observational study of infants without brain injury on conventional neuroimaging who were cared for in the neonatal intensive care unit (NICU) at Vanderbilt. Infants were studied using MRI relaxometry within a 2-month window of postmenstrual term age. In 45 infants, white matter MRI T1 relaxation times were influenced by both gestational age and postnatal age at imaging time (R(2) = 0.19 for gestational age vs. R(2) = 0.34 adjusting for both gestational age and age at imaging; all p < 0.01). Similar results were obtained with T2 relaxation times. In contrast, globus pallidus T1 reflected gestational age but was minimally affected by postnatal age (R(2) = 0.50 vs. 0.57, p < 0.001). CONCLUSIONS: The results obtained using this imaging protocol are consistent with the slow maturation of the globus pallidus, essential to normal development of complex motor programs into adulthood. Globus pallidus MRI relaxometry measures the impact of gestational age at birth on brain development independent of postnatal age in preterm infants and should prove useful for predictive modeling in a flexible time-window around postmenstrual term age.


Assuntos
Globo Pálido/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Putamen/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Modelos Lineares , Masculino , Nascimento Prematuro , Estudos Prospectivos
14.
Brain Behav Evol ; 83(2): 112-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24776992

RESUMO

Herein we take advantage of the evolutionary developmental biology approach in order to improve our understanding of both the functional organization and the evolution of the basal ganglia, with a particular focus on the globus pallidus. Therefore, we review data on the expression of developmental regulatory genes (that play key roles in patterning, regional specification and/or morphogenesis), gene function and fate mapping available in different vertebrate species, which are useful to (a) understand the embryonic origin and basic features of each neuron subtype of the basal ganglia (including neurotransmitter/neuropeptide expression and connectivity patterns); (b) identify the same (homologous) subpopulations in different species and the degree of variation or conservation throughout phylogeny, and (c) identify possible mechanisms that may explain the evolution of the basal ganglia. These data show that the globus pallidus of rodents contains two major subpopulations of GABAergic projection neurons: (1) neurons containing parvalbumin and neurotensin-related hexapetide (LANT6), with descending projections to the subthalamus and substantia nigra, which originate from progenitors expressing Nkx2.1, primarily located in the pallidal embryonic domain (medial ganglionic eminence), and (2) neurons containing preproenkephalin (and possibly calbindin), with ascending projections to the striatum, which appear to originate from progenitors expressing Islet1 in the striatal embryonic domain (lateral ganglionic eminence). Based on data on Nkx2.1, Islet1, LANT6 and proenkephalin, it appears that both cell types are also present in the globus pallidus/dorsal pallidum of chicken, frog and lungfish. In chicken, the globus pallidus also contains neurons expressing substance P (SP), perhaps originating in the striatal embryonic domain. In ray-finned and cartilaginous fishes, the pallidum contains at least the Nkx2.1 lineage cell population (likely representing the neurons containing LANT6). Based on the presence of neurons containing enkephalin or SP, it is possible that the pallidum of these animals also includes the Islet1 lineage cell subpopulation, and both neuron subtypes were likely present in the pallidum of the first jawed vertebrates. In contrast, lampreys (jawless fishes) appear to lack the pallidal embryonic domain and the Nkx2.1 lineage cell population that mainly characterize the pallidum in jawed vertebrates. In the absence of data in other jawless fishes, the ancestral condition in vertebrates remains to be elucidated. Perhaps, a major event in telencephalic evolution was the novel expression of Nkx2.1 in the subpallium, which has been related to Hedgehog expression and changes in the regulatory region of Nkx2.1.


Assuntos
Gânglios da Base/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Globo Pálido/embriologia , Animais , Gânglios da Base/crescimento & desenvolvimento , Globo Pálido/crescimento & desenvolvimento , Neurônios/citologia
15.
J Child Neurol ; 28(1): 60-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22532552

RESUMO

Synaptogenesis can be detected in tissue sections by immunoreactivity for synaptophysin, a synaptic vesicle glycoprotein that serves as a marker of synaptic maturation. Reactivity was prospectively studied postmortem in sections of the striatum, globus pallidus, and substantia nigra in 172 normal human fetuses and neonates of 6 to 41 weeks' gestation. Caudate nucleus and putamen show patchy reactivity beginning at 13 weeks' gestation around some intracapsular neurons; the pattern is well developed in all regions before midgestation. Near-uniform reactivity throughout the striatum is achieved by 34 weeks, but subtle patchiness is still perceived at term. The globus pallidus shows uniform reactivity without stria from 13 weeks and the substantia nigra from 9 weeks. Synaptic patchiness in the fetal corpus striatum appears to correspond to the "striosomes of Graybiel" that define adjacent neurotransmitter-rich and neurotransmitter-poor zones. Clinical correlation is proposed with dystonic postures and athetoid movements observed in normal preterm neonates of 26 to 32 weeks.


Assuntos
Corpo Estriado , Globo Pálido , Substância Negra , Sinapses/fisiologia , Fatores Etários , Corpo Estriado/citologia , Corpo Estriado/embriologia , Corpo Estriado/crescimento & desenvolvimento , Feminino , Feto , Idade Gestacional , Globo Pálido/citologia , Globo Pálido/embriologia , Globo Pálido/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Masculino , Mudanças Depois da Morte , Substância Negra/citologia , Substância Negra/embriologia , Substância Negra/crescimento & desenvolvimento , Sinapses/metabolismo , Sinaptofisina/metabolismo
16.
Neurosci Lett ; 493(1-2): 8-13, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21296128

RESUMO

Twin studies are one of the most powerful study designs for estimating the relative contribution of genetic and environmental influences on phenotypic variation inhuman brain morphology. In this study, we applied deformation based morphometry, a technique that provides a voxel-wise index of local tissue growth or atrophy relative to a template brain, combined with univariate ACE model, to investigate the genetic and environmental effects on the human brain structural variations in a cohort of homogeneously aged healthy pediatric twins. In addition, anatomical regions of interest (ROIs) were defined in order to explore global and regional genetic effects. ROI results showed that the influence of genetic factors on cerebrum (h(2)=0.70), total gray matter (0.67), and total white matter (0.73) volumes were significant. In particular, structural variability of left-side lobar volumes showed a significant heritability. Several subcortical structures such as putamen (h(ROI)(2)=0.79/0.77(L/R),h(MAX)(2)=0.82/0.79) and globus pallidus (0.81/0.76, 0.88/0.82) were also significantly heritable in both voxel-wise and ROI-based results. In the voxel-wise results, lateral parts of right cerebellum (c(2)=0.68) and the posterior portion of the corpus callosum (0.63) were rather environmentally determined, but it failed to reach statistical significance. Pediatric twin studies are important because they can discriminate several influences on developmental brain trajectories and identify relationships between gene and behavior. Several brain structures showed significant genetic effects and might therefore serve as biological markers for inherited traits, or as targets for genetic linkage and association studies.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Variação Genética/fisiologia , Gêmeos/genética , Mapeamento Encefálico/métodos , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Criança , Estudos de Coortes , Feminino , Globo Pálido/embriologia , Globo Pálido/crescimento & desenvolvimento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Putamen/embriologia , Putamen/crescimento & desenvolvimento
17.
J Neurosci ; 30(44): 14854-61, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048144

RESUMO

Inhibitory projections from the striatum and globus pallidus converge onto GABAergic projection neurons of the substantia nigra pars reticulata (SNr). Based on existing structural and functional evidence, these pathways are likely to differentially regulate the firing of SNr neurons. We sought to investigate the functional differences in inhibitory striatonigral and pallidonigral traffic using whole-cell voltage clamp in brain slices with these pathways preserved. We found that striatonigral IPSCs exhibited a high degree of paired-pulse facilitation. We tracked this facilitation over development and found the facilitation as the animal aged, but stabilized by postnatal day 17 (P17), with a paired pulse ratio of 2. We also found that the recovery from facilitation accelerated over development, again, reaching a stable phenotype by P17. In contrast, pallidonigral synapses show paired-pulse depression, and this depression could be solely explained by presynaptic changes. The mean paired-pulse ratio of 0.67 did not change over development, but the recovery from depression slowed over development. Pallidonigral IPSCs were significantly faster than striatonigral IPSCs when measured at the soma. Finally, under current clamp, prolonged bursts of striatal IPSPs were able to consistently silence the pacemaker activity of nigral neurons, whereas pallidal inputs depressed, allowing nigral neurons to reinstate firing. These findings highlight the importance of differential dynamics of neurotransmitter release in regulating the circuit behavior of the basal ganglia.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Substância Negra/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/crescimento & desenvolvimento , Neostriado/fisiologia , Técnicas de Cultura de Órgãos , Tempo de Reação/fisiologia , Substância Negra/crescimento & desenvolvimento , Ácido gama-Aminobutírico/fisiologia
18.
Brain Res ; 1329: 82-8, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20227397

RESUMO

The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n=17, female n=11; age range=2months-20years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia.


Assuntos
Gânglios da Base/anatomia & histologia , Gânglios da Base/crescimento & desenvolvimento , Cebus , Imageamento por Ressonância Magnética , Fatores Etários , Animais , Núcleo Caudado/anatomia & histologia , Núcleo Caudado/crescimento & desenvolvimento , Feminino , Globo Pálido/anatomia & histologia , Globo Pálido/crescimento & desenvolvimento , Masculino , Putamen/anatomia & histologia , Putamen/crescimento & desenvolvimento , Fatores Sexuais
20.
Acta Neuropathol ; 114(6): 619-31, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17912538

RESUMO

Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histology: PVL (n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diffuse white matter gliosis (DWMG) (n = 17) without necrosis; and "Negative" group (n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with significantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was significantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50-60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term "perinatal panencephalopathy" may better describe the scope of the neuropathology.


Assuntos
Dano Encefálico Crônico/epidemiologia , Encéfalo/crescimento & desenvolvimento , Leucomalácia Periventricular/epidemiologia , Degeneração Neural/epidemiologia , Nascimento Prematuro/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Dano Encefálico Crônico/patologia , Dano Encefálico Crônico/fisiopatologia , Núcleos Cerebelares/crescimento & desenvolvimento , Núcleos Cerebelares/patologia , Núcleos Cerebelares/fisiopatologia , Comorbidade , Feminino , Gliose/epidemiologia , Gliose/patologia , Gliose/fisiopatologia , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/patologia , Globo Pálido/fisiopatologia , Humanos , Lactente , Recém-Nascido , Leucomalácia Periventricular/patologia , Leucomalácia Periventricular/fisiopatologia , Masculino , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fibras Nervosas Mielinizadas/patologia , Neurônios/patologia , Prevalência , Tálamo/crescimento & desenvolvimento , Tálamo/patologia , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA