Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716239

RESUMO

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Assuntos
Envelhecimento/fisiologia , Podócitos/citologia , Adulto , Idoso , Animais , Autofagia , Restrição Calórica , Ciclo Celular , Forma Celular , Células Cultivadas , Senescência Celular , Dano ao DNA , Feminino , Expressão Gênica , Humanos , Inflamassomos , Glomérulos Renais/citologia , Glomérulos Renais/crescimento & desenvolvimento , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Animais , Oligopeptídeos/farmacologia , Estresse Oxidativo , Podócitos/metabolismo , Ratos , Morte Celular Regulada , Sirtuínas/metabolismo , Especificidade da Espécie , Adulto Jovem
2.
J Am Soc Nephrol ; 32(9): 2255-2272, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341180

RESUMO

BACKGROUND: Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS: We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS: Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS: Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Glomérulos Renais/irrigação sanguínea , Néfrons/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Animais Recém-Nascidos , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Camundongos , Néfrons/patologia , Transdução de Sinais , Proteínas Roundabout
3.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525532

RESUMO

Numerous evidence corroborates roles of gap junctions/hemichannels in proper kidney development. We analyzed how Dab1 gene functional silencing influences expression and localization of Cx37, Cx40, Cx43, Cx45, Panx1 and renin in postnatal kidneys of yotari mice, by using immunohistochemistry and electron microscopy. Dab1 Δ102/221 might lead to the activation of c-Src tyrosine kinase, causing the upregulation of Cx43 in the medulla of yotari mice. The expression of renin was more prominent in yotari mice (p < 0.001). Renin granules were unusually present inside the vascular walls of glomeruli capillaries, in proximal and distal convoluted tubules and in the medulla. Disfunction of Cx40 is likely responsible for increased atypically positioned renin cells which release renin in an uncontrolled fashion, but this doesn't rule out simultaneous involvement of other Cxs, such as Cx45 which was significantly increased in the yotari cortex. The decreased Cx37 expression in yotari medulla might contribute to hypertension reduction provoked by high renin expression. These findings imply the relevance of Cxs/Panx1 as markers of impaired kidney function (high renin) in yotari mice and that they have a role in the preservation of intercellular signaling and implicate connexopathies as the cause of premature death of yotari mice.


Assuntos
Conexina 43/genética , Conexinas/genética , Glomérulos Renais/metabolismo , Proteínas do Tecido Nervoso/genética , Renina/genética , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Regulação da Expressão Gênica no Desenvolvimento , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Medula Renal/crescimento & desenvolvimento , Medula Renal/metabolismo , Medula Renal/patologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Renina/metabolismo , Transdução de Sinais , Proteína alfa-5 de Junções Comunicantes , Proteína alfa-4 de Junções Comunicantes
4.
J Dev Orig Health Dis ; 12(6): 975-981, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300490

RESUMO

Preterm birth (delivery <37 weeks of gestation) is associated with impaired glomerular capillary growth in neonates; if this persists, it may be a contributing factor in the increased risk of hypertension and chronic kidney disease in people born preterm. Therefore, in this study, we aimed to determine the long-term impact of preterm birth on renal morphology, in adult sheep. Singleton male sheep were delivered moderately preterm at 132 days (~0.9) of gestation (n = 6) or at term (147 days gestation; n = 6) and euthanised at 14.5 months of age (early adulthood). Stereological methods were used to determine mean renal corpuscle and glomerular volumes, and glomerular capillary length and surface area, in the outer, mid and inner regions of the renal cortex. Glomerulosclerosis and interstitial collagen levels were assessed histologically. By 14.5 months of age, there was no difference between the term and preterm sheep in body or kidney weight. Renal corpuscle volume was significantly larger in the preterm sheep than the term sheep, with the preterm sheep exhibiting enlarged Bowman's spaces; however, there was no difference in glomerular volume between groups, with no impact of preterm birth on capillary length or surface area per glomerulus. There was also no difference in interstitial collagen levels or glomerulosclerosis index between groups. Findings suggest that moderate preterm birth does not adversely affect glomerular structure in early adulthood. The enlarged Bowman's space in the renal corpuscles of the preterm sheep kidneys, however, is of concern and merits further research into its cause and functional consequences.


Assuntos
Rim/anatomia & histologia , Rim/irrigação sanguínea , Análise de Variância , Animais , Austrália , Feminino , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/metabolismo , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Gravidez , Ovinos/crescimento & desenvolvimento , Ovinos/metabolismo
5.
Dev Biol ; 470: 62-73, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197428

RESUMO

Recent advances in stem cell biology have enabled the generation of kidney organoids in vitro, and further maturation of these organoids is observed after experimental transplantation. However, the current organoids remain immature and their precise maturation stages are difficult to determine because of limited information on developmental stage-dependent gene expressions in the kidney in vivo. To establish relevant molecular coordinates, we performed single-cell RNA sequencing (scRNA-seq) on developing kidneys at different stages in the mouse. By selecting genes that exhibited upregulation at birth compared with embryonic day 15.5 as well as cell lineage-specific expression, we generated gene lists correlated with developmental stages in individual cell lineages. Application of these lists to transplanted embryonic kidneys revealed that most cell types, other than the collecting ducts, exhibited similar maturation to kidneys at the neonatal stage in vivo, revealing non-synchronous maturation across the cell lineages. Thus, our scRNA-seq data can serve as useful molecular coordinates to assess the maturation of developing kidneys and eventually of kidney organoids.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rim/crescimento & desenvolvimento , Rim/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula , Regulação para Baixo , Rim/citologia , Rim/embriologia , Glomérulos Renais/citologia , Glomérulos Renais/embriologia , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo , Transplante de Rim , Túbulos Renais/citologia , Túbulos Renais/embriologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/metabolismo , Camundongos , Podócitos/citologia , Podócitos/metabolismo , RNA-Seq , Análise de Célula Única , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
6.
PLoS One ; 15(11): e0241384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166318

RESUMO

Recent advances in neonatal care have improved the survival rate of those born premature. But prenatal conditions, premature birth and clinical interventions can lead to transient and permanent problems in these fragile patients. Premature birth (<36 gestational weeks) occurs during critical renal development and maturation. Some consequences have been observed but the exact pathophysiology is still not entirely known. This experimental animal study aims to investigate the effect of premature birth on postnatal nephrogenesis in premature neonatal rabbits compared to term rabbits of the same corrected age. We analyzed renal morphology, glomerular maturity and functional parameters (proteinuria and protein/creatinine ratio) in three cohorts of rabbit pups: preterm (G28), preterm at day 7 of life (G28+7) and term at day 4 of life (G31+4). We found no significant differences in kidney volume and weight, and relative kidney volume between the cohorts. Nephrogenic zone width increased significantly over time when comparing G31 + 4 to G28. The renal corpuscle surface area, in the inner cortex and outer cortex, tended to decrease significantly after birth in both preterm and term groups. With regard to glomerular maturity, we found that the kidneys in the preterm cohorts were still in an immature state (presence of vesicles and capillary loop stage). Importantly, significant differences in proteinuria and protein/creatinine ratio were found. G28 + 7 showed increased proteinuria (p = 0.019) and an increased protein/creatinine ratio (p = 0.023) in comparison to G31 +4. In conclusion, these results suggest that the preterm rabbit kidney tends to linger in the immature glomerular stages and shows signs of a reduced renal functionality compared to the kidney born at term, which could in time lead to short- and long-term health consequences.


Assuntos
Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Nascimento Prematuro/patologia , Proteinúria/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Glomérulos Renais/fisiopatologia , Gravidez , Nascimento Prematuro/fisiopatologia , Proteinúria/fisiopatologia , Coelhos , Análise de Sobrevida
7.
Nat Commun ; 10(1): 5705, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836710

RESUMO

Although kidney parenchymal tissue can be generated in vitro, reconstructing the complex vasculature of the kidney remains a daunting task. The molecular pathways that specify and sustain functional, phenotypic and structural heterogeneity of the kidney vasculature are unknown. Here, we employ high-throughput bulk and single-cell RNA sequencing of the non-lymphatic endothelial cells (ECs) of the kidney to identify the molecular pathways that dictate vascular zonation from embryos to adulthood. We show that the kidney manifests vascular-specific signatures expressing defined transcription factors, ion channels, solute transporters, and angiocrine factors choreographing kidney functions. Notably, the ontology of the glomerulus coincides with induction of unique transcription factors, including Tbx3, Gata5, Prdm1, and Pbx1. Deletion of Tbx3 in ECs results in glomerular hypoplasia, microaneurysms and regressed fenestrations leading to fibrosis in subsets of glomeruli. Deciphering the molecular determinants of kidney vascular signatures lays the foundation for rebuilding nephrons and uncovering the pathogenesis of kidney disorders.


Assuntos
Capilares/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glomérulos Renais/irrigação sanguínea , Animais , Capilares/citologia , Capilares/metabolismo , Células Cultivadas , Embrião de Mamíferos , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Fator de Transcrição GATA5/genética , Fator de Transcrição GATA5/metabolismo , Perfilação da Expressão Gênica , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Cultura Primária de Células , RNA-Seq , Análise de Célula Única , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
8.
J Cell Biol ; 218(7): 2294-2308, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171632

RESUMO

The podocyte slit diaphragm (SD), responsible for blood filtration in vertebrates, is a major target of injury in chronic kidney disease. The damage includes severe morphological changes with destabilization of SDs and their replacement by junctional complexes between abnormally broadened foot processes. In Drosophila melanogaster, SDs are present in nephrocytes, which filter the fly's hemolymph. Here, we show that a specific isoform of Polychaetoid/ZO-1, Pyd-P, is essential for Drosophila SDs, since, in pyd mutants devoid of Pyd-P, SDs do not form and the SD component Dumbfounded accumulates at ectopic septate-like junctions between abnormally aggregated nephrocytes. Reintroduction of Pyd-P leads to junctional remodeling and their progressive normalization toward SDs. This transition requires the coiled-coil domain of Pyd-P and implies formation of nonclathrin vesicles containing SD components and their trafficking to the nephrocyte external membrane, where SDs assemble. Analyses in zebrafish suggest a conserved role for Tjp1a/ZO-1 in promoting junctional remodeling in podocytes.


Assuntos
Diafragma/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Junções Intercelulares/genética , Podócitos/metabolismo , Proteínas de Junções Íntimas/genética , Animais , Clatrina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo , Proteínas Mutantes/genética , Isoformas de Proteínas/genética , Peixe-Zebra/genética
9.
Semin Cell Dev Biol ; 91: 147-152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178004

RESUMO

Chronic kidney disease can be understood as a pathological reduction in the number of functional glomeruli. It is a frequent medical problem and one of the major independent risk factors for cardiovascular morbidity and mortality. In humans, glomeruli/nephrons are generated during the prenatal period (glomerular endowment), which may be impaired by multiple conditions. After birth, glomeruli are progressively lost - mostly due to glomerular scarring (focal segmental glomerulosclerosis; FSGS). Multiple independent studies have shown that significant loss of glomerular visceral epithelial cells (podocytes) is sufficient to induce FSGS. It is generally believed that podocytes cannot renew themselves and it has been generally assumed that their number is determined at birth (podocyte endowment). However, there are several lines of experimental evidence showing that podocytes can be replenished in the postnatal period. First, a limited reserve of podocytes has been reported on Bowman's capsule, which may be associated with body growth and increases in glomerular size between childhood and adulthood. Second, two intrinsic progenitor cell niches have been proposed to replenish podocytes throughout adult life and in association with glomerular injury and podocyte loss: parietal epithelial cells and/or cells of the renin lineage. While there is increasing evidence supporting postnatal podocyte gain, controversy remains about the involved signalling pathways and the efficiency of these sources to prevent nephron loss.


Assuntos
Células Epiteliais/citologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Glomérulos Renais/citologia , Néfrons/citologia , Podócitos/citologia , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Nicho de Células-Tronco , Células-Tronco/citologia
10.
Pediatr Res ; 85(5): 724-730, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700837

RESUMO

BACKGROUND: Renin-angiotensin system (RAS) blockade during nephrogenesis causes a broad range of renal mal-development. Here, we hypothesized that disruption of renal lymphangiogenesis may contribute to tubulointerstitial alterations after RAS blockade during kidney maturation. METHODS: Newborn rat pups were treated with enalapril (30 mg/kg/day) or vehicle for 7 days after birth. Lymphangiogenesis was assessed via immunostaining and/or immunoblots for vascular endothelial growth factor (VEGF)-C, VEGF receptor (VEGFR)-3, Podoplanin, and Ki-67. The intrarenal expression of fibroblast growth factor (FGF)-1, FGF-2, FGF receptor (R)-1, α-smooth muscle actin (α-SMA), and fibroblast-specific protein (FSP)-1 was also determined. Sirius Red staining was performed to evaluate interstitial collagen deposition. RESULTS: On postnatal day 8, renal lymphangiogenesis was disrupted by neonatal enalapril treatment. The expression of podoplanin and Ki-67 decreased in enalapril-treated kidneys. While the expression of VEGF-C was decreased, the levels of VEGFR-3 receptor increased following enalapril treatment. Enalapril treatment also reduced the renal expression of FGF-1, FGF-2, and FGFR-1. Enalapril-treated kidneys exhibited profibrogenic properties with increased expression of α-SMA and FSP-1 and enhanced deposition of interstitial collagen. CONCLUSION: Enalapril treatment during postnatal renal maturation can disrupt renal lymphangiogenesis along with tubulointerstitial changes, which may result in a pro-fibrotic environment in the developing rat kidney.


Assuntos
Angiotensinas/antagonistas & inibidores , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno/metabolismo , Enalapril/farmacologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose , Antígeno Ki-67/metabolismo , Nefropatias/patologia , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/patologia , Linfangiogênese , Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Matrix Biol ; 75-76: 58-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29803937

RESUMO

Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/genética , Aderências Teciduais/genética , Animais , Membrana Basal/crescimento & desenvolvimento , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/metabolismo , Caenorhabditis elegans/genética , Comunicação Celular/genética , Compartimento Celular/genética , Drosophila/genética , Matriz Extracelular/metabolismo , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo
12.
Sci Rep ; 8(1): 14723, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283057

RESUMO

Kidney-derived c-kit+ cells exhibit progenitor/stem cell properties and can regenerate epithelial tubular cells following ischemia-reperfusion injury in rats. We therefore investigated whether c-kit+ progenitor/stem cells contribute to podocyte repair in a rat model of acute proteinuria induced by puromycin aminonucleoside (PAN), the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. We found that c-kit+ progenitor/stem cells accelerated kidney recovery by improving foot process effacement (foot process width was lower in c-kit group vs saline treated animals, P = 0.03). In particular, these cells engrafted in small quantity into tubules, vessels, and glomeruli, where they occasionally differentiated into podocyte-like cells. This effect was related to an up regulation of α-Actinin-4 and mTORC2-Rictor pathway. Activation of autophagy by c-kit+ progenitor/stem cells also contributed to kidney regeneration and intracellular homeostasis (autophagosomes and autophagolysosomes number and LC3A/B-I and LC3A/B-II expression were higher in the c-kit group vs saline treated animals, P = 0.0031 and P = 0.0009, respectively). Taken together, our findings suggest that kidney-derived c-kit+ progenitor/stem cells exert reparative effects on glomerular disease processes through paracrine effects, to a lesser extent differentiation into podocyte-like cells and contribution to maintenance of podocyte cytoskeleton after injury. These findings have clinical implications for cell therapy of glomerular pathobiology.


Assuntos
Podócitos/metabolismo , Proteinúria/genética , Proteínas Proto-Oncogênicas c-kit/genética , Regeneração/genética , Actinina/genética , Animais , Diferenciação Celular/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Rim/metabolismo , Rim/patologia , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Nefrose Lipoide , Proteinúria/induzido quimicamente , Proteinúria/patologia , Puromicina Aminonucleosídeo/toxicidade , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Células-Tronco/metabolismo
13.
Acta Histochem ; 120(8): 748-756, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30193978

RESUMO

BACKGROUND: Podocytes are postmitotic, highly specialized cells which maintain the glomerular filtration barrier (GFB). Their injury is characterized by foot processes effacement and change in protein expression leading to proteinuria and end-stage kidney disease. METHODS: Our study focuses on the morphological and immunohistochemical changes of human podocytes during normal development and postnatal period, compared to congenital nephrotic syndrome of the Finnish type (CNF). Kidney tissues taken from 17 human conceptuses 8th-38th weeks old, two healthy and three CNF kidneys were embedded in paraffin for immunohistochemical or double immunofluorescence methods, or were embedded in resin for electron microscopy. Paraffin sections were stained with markers for proliferation (Ki-67), proteins nephrin and nestin, and alpha-tubulin. Quantification of positive cells were performed using Mann Whitney and Kruskal-Wallis test. RESULTS: Tissue analysis showed that proliferation of podocytes gradually decreased during development and disappeared in postnatal period. Decrease in number of ciliated glomerular cells and visceral podocytes (from 47% to 3%), and parietal epithelial cells (from 32% to 7%) characterized normal development. Nestin and nephrin co-expressed in developing podocytes in different cellular compartments. During development, nephrin expression increased (from 17% to 75%) and postnatally changed its pattern, while nestin positive glomerular cells decreased from 98% to 40%. CNF glomeruli displayed increased number of immature ciliated podocytes (6%) and parietal epithelial cells (9%). CONCLUSION: Changes in cytoplasmic alpha-tubulin expression and reduced nephrin expression (20%) indicating association of incomplete podocyte maturation with failure of GFB function and appearance of prenatal proteinuria in CNF patients.


Assuntos
Glomérulos Renais/crescimento & desenvolvimento , Proteínas de Membrana/genética , Síndrome Nefrótica , Podócitos , Diferenciação Celular , Proliferação de Células , Cílios , Humanos , Imuno-Histoquímica , Mutação , Padrões de Referência , Inclusão do Tecido
14.
Am J Physiol Renal Physiol ; 315(4): F852-F860, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29465303

RESUMO

A proper morphogenesis of the renal microvasculature is crucial not only for fulfilling the renal function but also to slow down the progression of chronic kidney disease in adulthood. However, the current description of the developing microvasculature is incomplete. The present study investigated the morphogenesis and volume densities of the renal microvasculature using computer-assisted tubular tracing, immunohistochemistry for CD34, and unbiased stereology. The earliest glomerular capillaries were observed at the lower cleft of the S-shaped nephrons, as simple loops connecting the afferent and efferent arterioles. In parallel with this, the peritubular capillaries were established. Noticeably, from early nephrogenesis on, the efferent arterioles of the early-formed glomeruli ran in close proximity to their own thick ascending limbs. In addition, the ascending vasa recta arising from the arcuate or interlobular veins also ran in close proximity to the thick descending limb. Thus, the tubules and vessels formed the typical countercurrent relation in the medulla. No loop bends were observed between descending and ascending vasa recta. The volume density of the cortical and medullary peritubular capillary increased 3.3- and 2.6-fold, respectively, from 2.34 (0.13) and 7.03 (0.09)% [means (SD)] at embryonic day 14.5 (E14.5) to 7.71 (0.44) and 18.27 (1.17)% at postnatal day 40 (P40). In contrast, the volume density of glomeruli changed only slightly during kidney development, from 4.61 (0.47)% at E14.5 to 6.07 (0.2)% at P7 to 4.19 (0.47)% at P40. These results reflect that the growth and formation of the renal microvasculature closely correspond to functional development of the tubules.


Assuntos
Rim/irrigação sanguínea , Rim/patologia , Microvasos/patologia , Néfrons/crescimento & desenvolvimento , Animais , Capilares/fisiologia , Rim/crescimento & desenvolvimento , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/crescimento & desenvolvimento , Medula Renal/irrigação sanguínea , Camundongos , Microvasos/fisiologia , Néfrons/irrigação sanguínea , Organogênese/fisiologia , Veias/crescimento & desenvolvimento
15.
Nephron ; 138(4): 310-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342457

RESUMO

BACKGROUND: von Hippel-Lindau (VHL) disease is characterized by the development of benign and malignant tumours in many organ systems, including renal cysts and clear cell renal cell carcinoma. It is not completely understood what underlies the development of renal pathology, and the use of murine Vhl models has been challenging due to limitations in disease conservation. We previously described a zebrafish model bearing inactivating mutations in the orthologue of the human VHL gene. METHODS: We used histopathological and functional assays to investigate the pronephric and glomerular developmental defects in vhl mutant zebrafish, supported by human cell culture assays. RESULTS: Here, we report that vhl is required to maintain pronephric tubule and glomerulus integrity in zebrafish embryos. vhl mutant glomeruli are enlarged, cxcr4a+ capillary loops are dilated and the Bowman space is widened. While we did not observe pronephric cysts, the cells of the proximal convoluted and anterior proximal straight tubule are enlarged, periodic acid schiff (PAS) and Oil Red O positive, and display a clear cytoplasm after hematoxylin and eosine staining. Ultrastructural analysis showed the vhl-/- tubule to accumulate large numbers of vesicles of variable size and electron density. Microinjection of the endocytic fluorescent marker AM1-43 in zebrafish embryos revealed an accumulation of endocytic vesicles in the vhl mutant pronephric tubule, which we can recapitulate in human cells lacking VHL. CONCLUSIONS: Our data indicates that vhl is required to maintain pronephric tubule and glomerulus integrity during zebrafish development, and suggests a role for VHL in endocytic vesicle trafficking.


Assuntos
Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Desenvolvimento Embrionário/genética , Glomérulos Renais/anormalidades , Glomérulos Renais/crescimento & desenvolvimento , Túbulos Renais Proximais/anormalidades , Túbulos Renais Proximais/crescimento & desenvolvimento , Larva , Mutação , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
Pediatr Res ; 83(3): 702-711, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29166383

RESUMO

BackgroundPremature birth occurs when nephrogenesis is incomplete and has been linked to increased renal pathologies in the adult. Metabolic factors complicating preterm birth may have additional consequences for kidney development. Here, we evaluated the effects of prematurity and hyperglycemia on nephrogenesis in premature baboons when compared with those in term animals.MethodsBaboons were delivered prematurely (67% gestation; n=9) or at term (n=7) and survived for 2-4 weeks. Preterm animals were classified by glucose control during the first 5 days of life: normoglycemic (PtN; serum glucose 50-100 mg/dl, n=6) and hyperglycemic (PtH; serum glucose 150-250 mg/dl, n=3). Kidneys were assessed histologically for glomeruli relative area, maturity, size, and overall morphology. Kidney lysates were evaluated for oxidative damage with 4-hydroxynonenal (4-HNE) antibody.ResultsHistological examination revealed decreased glomeruli relative area (P<0.05), fewer glomerular generations (P<0.01), and increased renal corpuscle area (P<0.001) in preterm compared with those in term animals. Numbers of apoptotic glomeruli were similar between groups. PtH kidneys exhibited reduced nephrogenic zone width (P<0.0001), increased numbers of mature glomeruli (P<0.05), and increased 4-HNE staining compared with those in PtN kidneys.ConclusionPrematurity interrupts normal kidney development, independent of glomerular cell apoptosis. When prematurity is complicated by hyperglycemia; kidney development shifts toward accelerated maturation and increased oxidative stress.


Assuntos
Hiperglicemia/complicações , Rim/patologia , Néfrons/crescimento & desenvolvimento , Estresse Oxidativo , Nascimento Prematuro , Aldeídos/química , Animais , Animais Recém-Nascidos , Apoptose , Glicemia/análise , Feminino , Imuno-Histoquímica , Rim/crescimento & desenvolvimento , Glomérulos Renais/crescimento & desenvolvimento , Masculino , Organogênese , Papio , Nascimento a Termo
17.
Birth Defects Res ; 109(15): 1228-1235, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28696058

RESUMO

BACKGROUND: Up to two-thirds of premature born neonates are treated for infections with aminoglycosides such as gentamicin. Although acute toxicities are well described, there is uncertainty on developmental changes after treatment of premature born neonates. We studied the effect of gentamicin and ceftazidime on kidney development in the rat. Additionally, we evaluated the modulating effect of extrauterine growth restriction. METHODS: On postnatal day (PND) 2, Wistar rats were cross-fostered into normal sized litters (12 pups) or large litters (20 pups) to create normal food (NF) or food restricted (FR) litters to simulate growth restriction and dosed daily intraperitoneally with placebo, 4 mg/kg of gentamicin or 50 mg/kg ceftazidime until PND 8. Gentamicin pharmacokinetics were studied in a separate group of animals. Kidneys were weighed. Renal expression of 18 developmental genes was evaluated by quantitative PCR on PND 8. On PND 35, glomerular number was assessed by stereology and glomerular generations were counted. RESULTS: Food restricted litters showed 22% less body weight compared with controls by day 35 (p < 0.001), 1.4- to 1.5-fold down regulation of Renin, Oat1, and Agtr1a (p < 0.05) expression and a 12% reduction in glomerular numbers (mean 30841 vs. 35187, p < 0.001), whereas glomerular generation count was unaffected. Gentamicin pharmacokinetic parameters were found to be in a human clinical range (mean maximum concentration in plasma of 4.88 mg/L and mean area under the plasma-concentration time curve up to the last measured concentration after 4 hr of 10.71 mg.h/L for sexes combined) and all endpoints were unaffected. Ceftazidime reduced Renin expression by 1.7-fold (p < 0.01). CONCLUSION: Our experiments showed that gentamicin at clinical levels did not disturb kidney development, ceftazidime can affect Renin expression, and extrauterine growth restriction impairs kidney development, but did not modulate potential drug toxicity. Birth Defects Research 109:1228-1235, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Ceftazidima/efeitos adversos , Gentamicinas/efeitos adversos , Rim/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Ceftazidima/metabolismo , Ceftazidima/farmacologia , Dieta Redutora , Feminino , Alimentos , Gentamicinas/metabolismo , Gentamicinas/farmacologia , Rim/crescimento & desenvolvimento , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/crescimento & desenvolvimento , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Organogênese/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
18.
J Am Soc Nephrol ; 28(10): 2931-2945, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28720684

RESUMO

Glomerular sclerotic lesions develop when the glomerular filtration surface area exceeds the availability of podocyte foot process coverage, but the mechanisms involved are incompletely characterized. We evaluated potential mechanisms using a transgenic (podocin promoter-AA-4E-BP1) rat in which podocyte capacity for hypertrophy in response to growth factor/nutrient signaling is impaired. FSGS lesions resembling human FSGS developed spontaneously by 7 months of age, and could be induced earlier by accelerating kidney hypertrophy by nephrectomy. Early segmental glomerular lesions occurred in the absence of a detectable reduction in average podocyte number per glomerulus and resulted from the loss of podocytes in individual glomerular capillary loops. Parietal epithelial cell division, accumulation on Bowman's capsule, and tuft invasion occurred at these sites. Three different interventions that prevented kidney growth and glomerular enlargement (calorie intake reduction, inhibition of mammalian target of rapamycin complex, and inhibition of angiotensin-converting enzyme) protected against FSGS lesion development, even when initiated late in the process. Ki67 nuclear staining and unbiased transcriptomic analysis identified increased glomerular (but not podocyte) cell cycling as necessary for FSGS lesion development. The rat FSGS-associated transcriptomic signature correlated with human glomerular transcriptomes associated with disease progression, compatible with similar processes occurring in man. We conclude that FSGS lesion development resulted from glomerular growth that exceeded the capacity of podocytes to adapt and adequately cover some parts of the filtration surface. Modest modulation of the growth side of this equation significantly ameliorated FSGS progression, suggesting that glomerular growth is an underappreciated therapeutic target for preservation of renal function.


Assuntos
Glomerulosclerose Segmentar e Focal/etiologia , Glomérulos Renais/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Peso Corporal , Ciclo Celular , Enalapril , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Glomérulos Renais/patologia , Masculino , Tamanho do Órgão , Podócitos/fisiologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Estresse Fisiológico , Transcriptoma
19.
Exp Cell Res ; 354(1): 48-56, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320523

RESUMO

Due to the distinct features that distinguish immortalized podocyte cell lines from their in vivo counterparts, primary cultured human podocytes might be a superior cell model for glomerular disease studies. However, the podocyte de-differentiation that occurs in culture remains an unresolved problem. Here, we present a method to differentiate primary cultured podocytes using retinoic acid (RA) and fluid shear stress (FSS), which mimic the in vivo environment of the glomerulus. RA treatment induced changes in the cell shape of podocytes from a cobblestone-like morphology to an arborized configuration with enhanced mobility. Moreover, the expression of synaptopodin and zonula occludens (ZO)-1 in RA-treated podocytes increased along with Krüppel-like factor 15 (KLF15) expression. Confocal microscopy revealed that RA increased the expression of cytoplasmic synaptopodin, which adopted a filamentous arrangement, and junctional ZO-1 expression, which showed a zipper-like pattern. To elucidate the effect of FSS in addition to RA, the podocytes were cultured in microfluidic devices and assigned to the static, static+RA, FSS, and FSS+RA groups. The FSS+RA group showed increased synaptopodin and ZO-1 expression with prominent spikes on the cell-cell interface. Furthermore, interdigitating processes were only observed in the FSS+RA group. Consistent with these data, the mRNA expression levels of synaptopodin, podocin, WT-1 and ZO-1 were synergistically increased by FSS and RA treatment. Additionally, the heights of the cells were greater in the FSS and FSS+RA groups than in the static groups, suggesting a restoration of the 3D cellular shape. Meanwhile, the expression of KLF15 increased in the RA-treated cells regardless of fluidic condition. Taken together, FSS and RA may contribute through different but additive mechanisms to the differentiation of podocytes. These cells may serve as a useful tool for mechanistic studies and the application of regenerative medicine to the treatment of kidney diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glomérulos Renais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Sinaptofisina/genética , Forma Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/biossíntese , Proteínas Nucleares/biossíntese , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Cultura Primária de Células , Estresse Mecânico , Tretinoína/administração & dosagem
20.
JCI Insight ; 2(2): e88848, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28138555

RESUMO

The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth.


Assuntos
Criocirurgia , Nefrectomia , Néfrons/crescimento & desenvolvimento , Células-Tronco , Animais , Animais Recém-Nascidos , Linhagem da Célula , Fibrose , Proteínas de Homeodomínio/metabolismo , Rim/patologia , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Néfrons/patologia , Organogênese , Fator de Transcrição PAX2/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA