Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Bioresour Technol ; 401: 130674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642663

RESUMO

Chemical production wastewater contains large amounts of organic solvents (OSs), which pose a significant threat to the environment. In this study, a 10 g·L-1 styrene oxide tolerant strain with broad-spectrum OSs tolerance was obtained via adaptive laboratory evolution. The mechanisms underlying the high OS tolerance of tolerant strain were investigated by integrating physiological, multi-omics, and genetic engineering analyses. Physiological changes are one of the main factors responsible for the high OS tolerance in mutant strains. Moreover, the P-type ATPase GOX_RS04415 and the LysR family transcriptional regulator GOX_RS04700 were also verified as critical genes for styrene oxide tolerance. The tolerance mechanisms of OSs can be used in biocatalytic chassis cell factories to synthesize compounds and degrade environmental pollutants. This study provides new insights into the mechanisms underlying the toxicological response to OS stress and offers potential targets for enhancing the solvent tolerance of G. oxydans.


Assuntos
Compostos de Epóxi , Gluconobacter oxydans , Mutação , Mutação/genética , Compostos de Epóxi/farmacologia , Gluconobacter oxydans/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/efeitos dos fármacos , Solventes , Biodegradação Ambiental , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Chembiochem ; 25(10): e202400107, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536122

RESUMO

This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.


Assuntos
Biocatálise , Hexosiltransferases , Fenóis , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Fenóis/metabolismo , Fenóis/química , Glicosilação , Especificidade por Substrato , Vibrio/enzimologia , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/metabolismo , Carboidratos/química
3.
Appl Microbiol Biotechnol ; 108(1): 27, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157006

RESUMO

Gastric and colorectal cancer are among the most frequently diagnosed malignancies of the gastrointestinal tract. Searching for methods of therapy that complements treatment or has a preventive effect is desirable. Bacterial metabolites safe for human health, which have postbiotic effect, are of interest recently. The study aimed to preliminary assessment of the safety, antimicrobial, and anti-cancer activity of cell-free metabolites of Gluconobacter oxydans strains isolated from Kombucha beverages as an example of the potential postbiotic activity of acetic acid bacteria (AAB). The study material consisted of five AAB strains of Kombucha origin and three human cell lines (gastric adenoma-AGS, colorectal adenoma-HT-29, and healthy cells derived from the endothelium of the human umbilical vein-HUVEC). Results of the study confirms the health safety and functional properties of selected AAB strains, including their potential postbiotic properties. The best potential anticancer activity of the AAB cell-free supernatants was demonstrated against AGS gastric adenoma cells. The conducted research proves the postbiotic potential of selected acetic acid bacteria, especially the KNS30 strain. KEY POINTS: •The beneficial and application properties of acetic acid bacteria are poorly studied. •Gluconobacter oxydans from Kombucha show a postbiotic activity. •The best anticancer activity of the G. oxydans showed against gastric adenoma.


Assuntos
Adenoma , Gluconobacter oxydans , Humanos , Gluconobacter oxydans/metabolismo , Ácido Acético/metabolismo
4.
Bioresour Technol ; 384: 129316, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315626

RESUMO

Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.


Assuntos
Gluconobacter oxydans , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Açúcares Ácidos/metabolismo , Ácido Ascórbico , Fermentação
5.
Biotechnol Adv ; 65: 108127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36924811

RESUMO

Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.


Assuntos
Gluconobacter oxydans , Gluconobacter , Gluconobacter/genética , Gluconobacter/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Biotecnologia , Catálise , Biotransformação
6.
Bioprocess Biosyst Eng ; 46(4): 589-597, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670301

RESUMO

Pre-hydrolysate liquor, as an inevitable by-product, contains a large amount of xylose, and is therefore an inexpensive feedstock that can be upgraded to value-added chemical xylonic acid. However, inhibitors, simultaneously formed in lignocellulose pretreatment process, are regarded as the major obstacle for effectively bio-converting xylose in pre-hydrolysate into xylonic acid. In this study, Gluconobacter oxydans, with highly selective and efficient, was employed for xylonic acid production; the impacts of five typical toxic inhibitory compounds on xylonic acid productivity and the activity of the membrane-bound dehydrogenase were evaluated. The results revealed that the inhibitors showed different degrees of influence toward xylonic acid production, and the order of inhibitory effect for acidic inhibitors was formic acid > acetic acid > levulinic acid; the inhibitory effect of aldehyde inhibitors was furfural > 5-hydroxymethyl-furfural. This study provides an important basis of metabolic modification and detoxification process for enhancing inhibitor tolerance and xylonic acid productivity.


Assuntos
Gluconobacter oxydans , Fermentação , Gluconobacter oxydans/metabolismo , Xilose/metabolismo , Furaldeído/metabolismo , Ácidos
7.
Biochim Biophys Acta Gen Subj ; 1867(2): 130289, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503080

RESUMO

BACKGROUND: Gluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction. METHODS: Enzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes. RESULTS AND CONCLUSIONS: In this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3'-OH and 5'-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855-0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein. GENERAL SIGNIFICANCE: In this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.


Assuntos
Gluconobacter oxydans , L-Iditol 2-Desidrogenase , Humanos , L-Iditol 2-Desidrogenase/genética , L-Iditol 2-Desidrogenase/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Galactitol/metabolismo , Escherichia coli/metabolismo
8.
Microb Cell Fact ; 21(1): 223, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307807

RESUMO

BACKGROUND: Adipic acid (AA) is one of the most important industrial chemicals used mainly for the production of Nylon 6,6 but also for making polyurethanes, plasticizers, and unsaturated polyester resins, and more recently as a component in the biodegradable polyester poly(butylene adipate terephthalate) (PBAT). The main route for AA production utilizes benzene as feedstock and generates copious amounts of the greenhouse gas NO2. Hence, alternative clean production routes for AA from renewable bio-based feedstock are drawing increasing attention. We have earlier reported the potential of Gluconobacter oxydans cells to oxidize 1,6-hexanediol, a potentially biobased diol to AA. RESULTS: The present report involves a study on the effect of different parameters on the microbial transformation of 1,6-hexanediol to adipic acid, and subsequently testing the process on a larger lab scale for achieving maximal conversion and yield. Comparison of three wild-type strains of G. oxydans DSM50049, DSM2003, and DSM2343 for the whole-cell biotransformation of 10 g/L 1,6-hexanediol to adipic acid in batch mode at pH 7 and 30 °C led to the selection of G. oxydans DSM50049, which showed 100% conversion of the substrate with over 99% yield of adipic acid in 30 h. An increase in the concentrations of the substrate decreased the degree of conversion, while the product up to 25 g/L in batch and 40 g/L in fed-batch showed no inhibition on the conversion. Moreover, controlling the pH of the reaction at 5-5.5 was required for the cascade oxidation reactions to work. Cell recycling for the biotransformation resulted in a significant decrease in activity during the third cycle. Meanwhile, the fed-batch mode of transformation by intermittent addition of 1,6-hexanediol (30 g in total) in 1 L scale resulted in complete conversion with over 99% yield of adipic acid (approximately 37 g/L). The product was recovered in a pure form using downstream steps without the use of any solvent. CONCLUSION: A facile, efficient microbial process for oxidation of 1,6-hexanediol to adipic acid, having potential for scale up was demonstrated. The entire process is performed in aqueous medium at ambient temperatures with minimal greenhouse gas emissions. The enzymes involved in catalyzing the oxidation steps are currently being identified.


Assuntos
Gluconobacter oxydans , Gases de Efeito Estufa , Gluconobacter oxydans/metabolismo , Gases de Efeito Estufa/metabolismo , Adipatos/metabolismo , Poliésteres/metabolismo
9.
Toxins (Basel) ; 14(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35878161

RESUMO

Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.


Assuntos
Gluconobacter oxydans , Malus , Patulina , Escherichia coli/metabolismo , Furanos , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Malus/química , Oxirredutases , Patulina/metabolismo
10.
World J Microbiol Biotechnol ; 38(8): 134, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35688964

RESUMO

Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.


Assuntos
Gluconobacter oxydans , Ácido Acético/metabolismo , Biotecnologia , Fermentação , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Engenharia Metabólica
11.
Bioresour Technol ; 354: 127107, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381333

RESUMO

The direct fermentation of the precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG), has been a long-pursued goal. Previously, a strain of Gluconobacter oxydans WSH-004 was isolated that produced 2.5 g/L 2-KLG, and through adaptive evolution engineering, the strain G. oxydans MMC3 could tolerate 300 g/L D-sorbitol. This study verified that the sndh-sdh gene cluster encoded two key dehydrogenases for the 2-KLG biosynthesis pathway in this strain. Then G. oxydans MMC3 further evolved through adaptive evolution to G. oxydans 2-KLG5, which can tolerate high concentrations of D-sorbitol and 2-KLG. Finally, by increasing the gene expression levels of the sndh-sdh and terminal oxidase cyoBACD in G. oxydans 2-KLG5, the 2-KLG accumulation in the 5-L fermenter increased to 45.14 g/L by batch fermentation. The results showed that combined evolutionary and metabolic engineering efficiently improved the direct production of 2-KLG from D-sorbitol in G. oxydans.


Assuntos
Gluconobacter oxydans , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Engenharia Metabólica , Sorbitol/metabolismo , Açúcares Ácidos/metabolismo
12.
Microb Cell Fact ; 21(1): 35, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264166

RESUMO

BACKGROUND: D-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of D-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity. RESULTS: The D-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in D-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of D-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L D-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural. CONCLUSION: Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high D-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production.


Assuntos
Gluconobacter oxydans , Fermentação , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo , Zea mays/metabolismo
13.
Nat Commun ; 12(1): 6693, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795278

RESUMO

Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Inativação de Genes/métodos , Genoma Bacteriano/genética , Gluconobacter oxydans/genética , Glucose Desidrogenase/genética , Cofator PQQ/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética/métodos , Gluconobacter oxydans/metabolismo , Glucose Desidrogenase/metabolismo , Microbiologia Industrial/métodos , Metais Terras Raras/metabolismo , Cofator PQQ/metabolismo , Reprodutibilidade dos Testes
14.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741613

RESUMO

Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCEGluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.


Assuntos
Ácido Acético/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Gluconobacter oxydans/genética , Fatores de Transcrição/genética , Aerobiose , Proteínas de Bactérias/metabolismo , Gluconobacter oxydans/metabolismo , Oxirredução , Fatores de Transcrição/metabolismo
15.
ACS Synth Biol ; 10(1): 84-93, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399467

RESUMO

Gluconobacter oxydans is well-known for its incomplete oxidizing capacity and has been widely applied in industrial production. However, genetic tools in G. oxydans are still scarce compared with model microorganisms, limiting its metabolic engineering. This study aimed to develop a clustered regularly interspaced short palindromic repeats interference (CRISPRi) system based on the typical type I-E endogenous CRISPR/CRISPR-associated proteins (Cas) system in G. oxydans WSH-003. The nuclease Cas3 in this system was inactivated naturally and hence did not need to be knocked out. Subsequently, the CRISPRi effect was verified by repressing the expression of fluorescent proteins, revealing effective multiplex gene repression. Finally, the endogenous CRISPRi system was used to study the role of the central carbon metabolism pathway, including the pentose phosphate pathway (PPP) and Entner-Doudoroff pathway (EDP), in G. oxydans WSH-003. This was done to demonstrate a metabolic engineering application. The PPP was found to be important for cell growth and the substrate conversion rate. The development of the CRISPRi system enriched the gene regulation tools in G. oxydans and promoted the metabolic engineering modification of G. oxydans to improve its performance. In addition, it might have implications for metabolic engineering modification of other genetically recalcitrant strains.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Gluconobacter oxydans/metabolismo , Ciclo do Carbono/genética , Expressão Gênica , Gluconobacter oxydans/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Engenharia Metabólica , Via de Pentose Fosfato/genética
16.
Appl Biochem Biotechnol ; 193(1): 128-141, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32827065

RESUMO

Industrial production of 2-keto-L-gulonic acid (2-KLG), the precursor of vitamin C, is mainly achieved by a two-step fermentation process carried out by Gluconobacter oxydans, Bacillus, and Ketogulonicigenium. One of the most promising innovations that could replace this complicated two-step fermentation process is the integration of the essential genes for synthesis of 2-KLG into G. oxydans and use of it as the producer. Therefore, determining the tolerance and response of G. oxydans to 2-KLG is a priority for improving the direct production of 2-KLG in this bacterium. In this study, a global view of the gene expression of G. oxydans WSH-003 in response to 2-KLG challenge was investigated by RNA sequencing. A total of 363 genes of G. oxydans that were differentially expressed in response to 2-KLG were uncovered. The results showed that 2-KLG could lead to oxidative stress, osmotic stress, and DNA damage in G. oxydans.


Assuntos
Perfilação da Expressão Gênica , Gluconobacter oxydans/metabolismo , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Açúcares Ácidos/farmacologia , Transcriptoma/efeitos dos fármacos , Gluconobacter oxydans/genética , Estresse Oxidativo/genética
17.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127815

RESUMO

Gluconobacter oxydans has the unique property of a glucose oxidation system in the periplasmic space, where glucose is oxidized incompletely to ketogluconic acids in a nicotinamide cofactor-independent manner. Elimination of the gdhM gene for membrane-bound glucose dehydrogenase, the first enzyme for the periplasmic glucose oxidation system, induces a metabolic change whereby glucose is oxidized in the cytoplasm to acetic acid. G. oxydans strain NBRC3293 possesses two molecular species of type II NADH dehydrogenase (NDH), the primary and auxiliary NDHs that oxidize NAD(P)H by reducing ubiquinone in the cell membrane. The substrate specificities of the two NDHs are different from each other: primary NDH (p-NDH) oxidizes NADH specifically but auxiliary NDH (a-NDH) oxidizes both NADH and NADPH. We constructed G. oxydans NBRC3293 derivatives defective in the ndhA gene for a-NDH, in the gdhM gene, and in both. Our ΔgdhM derivative yielded higher cell biomass on glucose, as reported previously, but grew at a lower rate than the wild-type strain. The ΔndhA derivative showed growth behavior on glucose similar to that of the wild type. The ΔgdhM ΔndhA double mutant showed greatly delayed growth on glucose, but its cell biomass was similar to that of the ΔgdhM strain. The double mutant accumulated intracellular levels of NAD(P)H and thus shifted the redox balance to reduction. Accumulated NAD(P)H levels might repress growth on glucose by limiting oxidative metabolisms in the cytoplasm. We suggest that a-NDH plays a crucial role in redox homeostasis of nicotinamide cofactors in the absence of the periplasmic oxidation system in G. oxydansIMPORTANCE Nicotinamide cofactors NAD+ and NADP+ mediate redox reactions in metabolism. Gluconobacter oxydans, a member of the acetic acid bacteria, oxidizes glucose incompletely in the periplasmic space-outside the cell. This incomplete oxidation of glucose is independent of nicotinamide cofactors. However, if the periplasmic oxidation of glucose is abolished, the cells oxidize glucose in the cytoplasm by reducing nicotinamide cofactors. Reduced forms of nicotinamide cofactors are reoxidized by NADH dehydrogenase (NDH) on the cell membrane. We found that two kinds of NDH in G. oxydans have different substrate specificities: the primary enzyme is NADH specific, and the auxiliary one oxidizes both NADH and NADPH. Inactivation of the latter enzyme in G. oxydans cells in which we had induced cytoplasmic glucose oxidation resulted in elevated intracellular levels of NAD(P)H, limiting cell growth on glucose. We suggest that the auxiliary enzyme is important if G. oxydans grows independently of the periplasmic oxidation system.


Assuntos
Gluconobacter oxydans/enzimologia , NADH Desidrogenase/metabolismo , NADP/metabolismo , NAD/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Homeostase , Niacinamida/metabolismo , Oxirredução , Periplasma/metabolismo
18.
Enzyme Microb Technol ; 141: 109670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33051020

RESUMO

6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ±â€¯3.0 g/L of 6NSL production with 94.5 ±â€¯3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.


Assuntos
Gluconobacter oxydans/metabolismo , L-Iditol 2-Desidrogenase/metabolismo , Cofator PQQ/biossíntese , Sorbose/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Biotransformação , Expressão Gênica , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , L-Iditol 2-Desidrogenase/genética , Família Multigênica , Nitrosaminas/metabolismo , Cofator PQQ/genética , Cofator PQQ/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorbose/biossíntese
19.
Sci Rep ; 10(1): 13527, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782276

RESUMO

A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett-Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.


Assuntos
Ácido Acético/metabolismo , Gluconobacter oxydans/metabolismo , Modelos Estatísticos , Filogenia , RNA Bacteriano/análise , Riboflavina/metabolismo , Meios de Cultura , Genoma Bacteriano , Gluconobacter oxydans/genética , Gluconobacter oxydans/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
20.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1138-1149, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597063

RESUMO

Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.


Assuntos
Gluconobacter oxydans , Microbiologia Industrial , Cofator PQQ , Fermentação , Técnicas de Inativação de Genes , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Microbiologia Industrial/métodos , Família Multigênica/genética , Organismos Geneticamente Modificados , Cofator PQQ/biossíntese , Cofator PQQ/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA