Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Food Chem ; 455: 139761, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850975

RESUMO

Xylooligosaccharides (XOs) have shown high potential as prebiotics with nutritional and health benefits. In this work, XOs were obtained from highly purified, carboxy-reduced glucuronoarabinoxylans by treatment with Driselase®. The mixtures were fractionated, and the structures were elucidated by methylation analysis and NMR spectroscopy. Antioxidant activity was determined by the methods of DPPH and ß-carotene/linoleic acid. It was found that the most active oligosaccharides (P3 and G3) comprised 4 or 5 xylose units, plus two arabinoses and one 4-O-methylglucose as side chains, their sequence of units was determined. The optimal concentration for their use as antioxidants was 2 mg/mL. The synthetic antioxidant butylated hydroxytoluene (BHT, 0.2 mg/mL) showed a percentage of inhibition 15% higher than P3. Although its concentration was ∼10 times higher, P3 is non-toxic, and could have great advantages as food additive. These results show that pure XOs exert significant antioxidant activity, only due to their carbohydrate nature.


Assuntos
Antioxidantes , Oligossacarídeos , Antioxidantes/química , Antioxidantes/farmacologia , Oligossacarídeos/química , Xilanos/química , Glucuronatos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Brotos de Planta/química
2.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823916

RESUMO

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Assuntos
Bifidobacterium longum , Celulose , Endo-1,4-beta-Xilanases , Glucuronatos , Glicosídeo Hidrolases , Oligossacarídeos , Saccharum , Xilanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Glucuronatos/metabolismo , Glucuronatos/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Xilanos/metabolismo , Xilanos/química , Saccharum/química , Saccharum/metabolismo , Celulose/química , Celulose/metabolismo , Bifidobacterium longum/enzimologia , Bifidobacterium longum/metabolismo , Hidrólise , Especificidade por Substrato , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Dissacarídeos
3.
Carbohydr Polym ; 337: 122141, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710568

RESUMO

Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R. champanellensis xylanase from glycoside hydrolase (GH) family 30 (RcXyn30A), and evaluated its applicability for XOS production from glucuronoxylan in combination with two endo-xylanases from GH10 and GH11 families and a GH11 xylobiohydrolase. RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and is inefficient in cleaving unbranched oligosaccharides. Crystallographic structure of RcXyn30A catalytic domain was solved and refined to 1.37 Å resolution. Structural analysis of the catalytic domain releveled that its high affinity for glucuronic acid substituted xylan is due to the coordination of the substrate decoration by several hydrogen bonds and ionic interactions in the subsite -2. Furthermore, the protein has a larger ß5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3) of the catalytic site. Finally, RcXyn30A activity is synergic to that of GH11 xylobiohydrolase.


Assuntos
Endo-1,4-beta-Xilanases , Microbioma Gastrointestinal , Glucuronatos , Oligossacarídeos , Xilosidases , Glucuronatos/metabolismo , Glucuronatos/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Xilosidases/metabolismo , Xilosidases/química , Humanos , Cristalografia por Raios X , Xilanos/química , Xilanos/metabolismo , Domínio Catalítico , Modelos Moleculares , Especificidade por Substrato
4.
Int J Biol Macromol ; 271(Pt 2): 132575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788863

RESUMO

Rice husks are rich in xylan, which can be hydrolyzed by xylanase to form xylooligosaccharides (XOS). XOS are a functional oligosaccharide such as improving gut microbiota and antioxidant properties. In this study, the structure and functional characteristics of XOS were studied. The optimal xylanase hydrolysis conditions through response surface methodology (RSM) were: xylanase dosage of 3000 U/g, hydrolysis time of 3 h, hydrolysis temperature of 50 °C. Under this condition, the yield of XOS was 150.9 mg/g. The TG-DTG curve showed that XOS began to decompose at around 200 °C. When the concentration of XOS reached 1.0 g/L, the clearance rate of DPPH reached 65.76 %, and the scavenging rate of OH reached 62.10 %, while the clearance rate of ABTS free radicals reached 97.70 %, which was equivalent to the clearance rate of VC. XOS had a proliferative effect on four probiotics: Lactobacillus plantarum, Lactobacillus brucelli, Lactobacillus acidophilus, and Lactobacillus rhamnosus. However, the further experiments are needed to explore the improvement effect of XOS on human gut microbiota, laying a foundation for the effective utilization of XOS. XOS have a wide range of sources, low price, and broad development prospects. The reasonable utilization of XOS can bring greater economic benefits.


Assuntos
Antioxidantes , Glucuronatos , Oligossacarídeos , Oryza , Probióticos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oryza/química , Glucuronatos/farmacologia , Glucuronatos/química , Antioxidantes/farmacologia , Antioxidantes/química , Hidrólise , Endo-1,4-beta-Xilanases/metabolismo , Lactobacillus
5.
Int J Biol Macromol ; 269(Pt 1): 132134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719013

RESUMO

Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.


Assuntos
Apigenina , Ciclodextrinas , Portadores de Fármacos , Glucuronatos , Peróxido de Hidrogênio , Silício , Animais , Humanos , Ciclodextrinas/química , Camundongos , Peróxido de Hidrogênio/química , Apigenina/química , Apigenina/farmacologia , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Glucuronatos/química , Glucuronatos/farmacologia , Silício/química , Porosidade , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Celulose
6.
Int J Biol Macromol ; 270(Pt 2): 132211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723833

RESUMO

Prebiotics are non-digestible compounds that promote intestinal microbiota growth and/or activity. Xylooligosaccharides (XOS) are new prebiotics derived from the hemicellulose fraction of lignocellulosic materials. Challenges in using those materials as sources for prebiotic compounds lie in the hemicellulose extraction efficiency and the safety of those ingredients. In this sense, this work aims to optimize hemicellulose extraction and XOS production through direct enzymatic hydrolysis of alkali pre-treated wheat straw without undesired byproducts. By increasing the temperature of the enzymatic step from 40 °C to 65 °C we achieved an improvement in the extraction yield from 55 % to 80 %. Products with different degrees of polymerization were also noticed: while XOS ≤ X6 where the main products at 40 °C, a mixture of long arabinoxylan derived polymers (ADPo) and XOS ≤ X6 was obtained at 65 °C, irrespective of the extraction yield. Thus, a modulatory effect of temperature on the product profile is suggested here. Among the XOS ≤ X6 produced, X2-X3 were the main products, and X4 was the minor one. At the end of the hydrolysis, 146.7 mg XOS per gram of pre-treated wheat straw were obtained.


Assuntos
Endo-1,4-beta-Xilanases , Oligossacarídeos , Polissacarídeos , Temperatura , Triticum , Triticum/química , Hidrólise , Polissacarídeos/química , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/química , Glucuronatos/química , Xilanos/química , Xilanos/metabolismo
7.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581076

RESUMO

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Espectroscopia de Ressonância Magnética , Metabolômica , Extratos Vegetais , Scutellaria , Scutellaria/química , Humanos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apigenina/farmacologia , Apigenina/química , Apigenina/isolamento & purificação , Apigenina/análise , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/isolamento & purificação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Glucuronatos/farmacologia , Glucuronatos/isolamento & purificação , Glucuronatos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
8.
J Asian Nat Prod Res ; 26(8): 867-882, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594834

RESUMO

Phenolics produced during xylooligosaccharide production might inhibit xylanases and enhance the antioxidant and antimicrobial activities of XOS. The effects of phenolic compounds on xylanases may depend on the type and concentration of the compound, the plant biomass used, and the enzyme used. Understanding the effects of phenolic compounds on xylanases and their impact on XOS is critical for developing viable bioconversion of lignocellulosic biomass to XOS. Understanding the complex relationship between phenolic compounds and xylanases can lead to the development of strategies that improve the efficiency and cost-effectiveness of XOS manufacturing processes and optimise enzyme performance.


Assuntos
Glucuronatos , Oligossacarídeos , Fenóis , Prebióticos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Glucuronatos/farmacologia , Glucuronatos/química , Fenóis/química , Fenóis/farmacologia , Estrutura Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Endo-1,4-beta-Xilanases/metabolismo
9.
Int J Biol Macromol ; 259(Pt 2): 129262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199559

RESUMO

XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.


Assuntos
Camellia , Ácido Pirúvico , Temperatura , Hidrólise , Oligossacarídeos/química , Glucuronatos/química , Ácidos
10.
Biomacromolecules ; 24(1): 132-140, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542490

RESUMO

Xylooligosaccharides (XOSs) gained much attention for their use in food and animal feed, attributed to their prebiotic function. These short-chained carbohydrates can be enzymatically produced from xylan, one of the most prevalent forms of hemicellulose. In this work, endo-1,4-ß-xylanase from Thermotoga maritima was immobilized on cellulose-based beads with the goal of producing xylooligosaccharides with degrees of polymerization (DPs) in the range of 4-6 monomeric units. More specifically, the impact of different spacer arms, tethers connecting the enzyme with the particle, on the expressed enzymatic activity and oligosaccharide yield was investigated. After surface functionalization of the cellulose beads, the presence of amines was confirmed with time of flight secondary ion mass spectrometry (TOF-SIMS), and the influence of different spacer arms on xylanase activity was established. Furthermore, XOSs (DPs 2-6) with up to 58.27 mg/g xylan were obtained, which were greatly enriched in longer oligosaccharides. Approximately 80% of these XOSs displayed DPs between 4 and 6. These findings highlight the importance of topochemical engineering of carriers to influence enzyme activity, and the work puts forward an enzymatic system focusing on the production of longer xylooligosaccharides.


Assuntos
Celulose , Endo-1,4-beta-Xilanases , Endo-1,4-beta-Xilanases/química , Xilanos/química , Hidrólise , Oligossacarídeos/química , Glucuronatos/química
11.
Bioresour Technol ; 362: 127800, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007765

RESUMO

The application of biorefinery concepts to produce different value-added biomolecules such as xylooligosaccharides (XOs) generates economical competitive, sustainable and environmentally friendly processes. The objective of this work was to develop an efficient imidazole-pretreatment process of sugarcane bagasse (SB) and the use of the obtained hemicellulose fraction in the production of XOs with the application of in house produced xylanolytic enzymes using SB as substrate, under a biorefinery approach. SB imidazole pretreatment allowed the recovery of a hemicellulose rich fraction (34%) with 91.2% of delignification. Xylanase production by Aspergillus niger reached 53.1 U·mL-1 at 120 h. The application of produced xylanases in the enzymatic hydrolysis of extracted xylan, allowed the production of 6.06 g·L-1 of XOs, where xylotriose represented >70%. Great perspectives are viewed for the implementation of mixed processes in a sustainable closed cycle to produce biomolecules with concomitant valorization of subproducts from SB chain.


Assuntos
Saccharum , Celulose/química , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Imidazóis , Oligossacarídeos , Saccharum/química
12.
Carbohydr Polym ; 292: 119641, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725201

RESUMO

In order to produce xylooligosaccharides (XOS) with excellent prebiotics properties from industrial-derived xylan residue (IDXR), maleic acid (MA) and citric acid (CA) were used as catalysts under different treatment conditions. Under the identified optimum conditions (0.1 M of MA and 0.5 M of CA at 150 °C for 40 min), CA showed a better ability than MA to maximumly produce XOS. The yields of XOS from MA and CA treatments were 48.9% and 52.3%, which were comprised of X2-X6 proportions of 69.47% and 66.70%, respectively. Anaerobic fermentation results demonstrated that both XOS-CA and XOS-MA exhibited pronounced prebiotic activity for proliferating Bifidobacterium adolescentis (B. adolescentis) and Lactobacillus acidophilus (L. acidophilus). XOS-CA possessed the better ability for B. adolescentis to produce the short-chain fatty acid (SCFA), while XOS-MA outperformed XOS-CA for L. acidophilus to produce SCFA. These results imply organic acid treatments can be applied to produce XOS with excellent prebiotic properties from IDXR.


Assuntos
Glucuronatos/análise , Oligossacarídeos/análise , Prebióticos , Xilanos , Ácidos/química , Ácidos Graxos Voláteis/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química
13.
Food Chem ; 391: 133231, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613528

RESUMO

This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â†’ 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.


Assuntos
Antioxidantes , Prebióticos , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
14.
Bioresour Technol ; 352: 127041, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318144

RESUMO

Generation of specific xylooligosaccharides (XOS) is attractive to the pharmaceutical and food industries due to the importance of their structure upon their application. This study used chemometrics to develop a comprehensive computational modelling set to predict the parameters maximising the generation of the desired XOS during enzymatic hydrolysis. The evaluated parameters included pH, temperature, substrate concentration, enzyme dosage and reaction time. A Box-Behnken design was combined with response surface methodology to develop the models. High-performance anion-exchange chromatography coupled with triple-quadrupole mass spectrometry (HPAEC-QqQ-MS) allowed the identification of 22 XOS within beechwood xylan hydrolysates. These data were used to validate the developed models and demonstrated their accuracy in predicting the parameters maximising the generation of the desired XOS. The maximum yields for X2-X6 were 314.2 ± 1.2, 76.6 ± 4.5, 38.4 ± 0.4, 17.8 ± 0.7, and 5.3 ± 0.2 mg/g xylan, respectively. These values map closely to the model predicted values 311.7, 92.6, 43.0, 16.3, and 4.9 mg/g xylan, respectively.


Assuntos
Quimiometria , Xilanos , Cromatografia , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
15.
J Chromatogr A ; 1666: 462836, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35108629

RESUMO

High-performance anion-exchange chromatography (HPAEC) coupled with triple quadrupole mass spectrometry (HPAEC-QqQ-MS) was applied to the determination of xylooligosaccharides (XOS) derived from enzymatically hydrolysed commercial xylan from beechwood and the analytical performance and advantages of the method explored. Separation, eluent suppression, electrospray ionisation, and detection options to enhance XOS sensitivity and selectivity were evaluated, delivering a new simple, fast, selective, and sensitive solution for the characterisation of these complex compounds. The method was fully validated in terms of its analytical performance for those XOS for which standards were available, i.e., degree of polymerisation from 1 to 6. The new method was applied to the analysis of xylan hydrolysates obtained by different enzymatic hydrolysis treatments using endo-xylanase from Thermomyces lanuginosus, characterising 25 different XOS and demonstrating the method's utility for future tailoring of enzymatic hydrolysis conditions to obtain desired XOS profiles in such hydrolysates. Linear XOS and 4-O-methyl glucuronic acid (MeGluA) branched XOS were detected by direct injection of the xylan hydrolysates after a simple 10-fold sample dilution and filtration. Identification of XOS detected by HPAEC-QqQ-MS was additionally confirmed using high-resolution orbitrap mass spectrometry (HR-orbitrap-MS). Further, an ultra-sensitive and -selective method was developed by using selected reaction monitoring acquisition mode (SRM), increasing signal-to noise ratio and decreasing the limits of detection, opening future applications to low concentrated sample analysis.


Assuntos
Espectrometria de Massas em Tandem , Xilanos , Ânions , Cromatografia , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
16.
Bioengineered ; 13(1): 1013-1024, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974800

RESUMO

The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was -28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 108) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.


Assuntos
Citoesqueleto de Actina/metabolismo , Fosfatase Alcalina/metabolismo , Apigenina/farmacologia , Glucuronatos/farmacologia , Osteoblastos/citologia , Osteocalcina/metabolismo , Animais , Apigenina/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Composição de Medicamentos , Glucuronatos/química , Lipossomos , Nanopartículas , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Tamanho da Partícula , Cultura Primária de Células , Ratos
17.
Sci Rep ; 12(1): 11, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996923

RESUMO

The prebiotic properties of xylooligosaccharides (XOS) and arabino-xylooligosaccharides (AXOS) produced from rice husk (RH) using microwave treatment combined with enzymatic hydrolysis were evaluated. The RH was subjected to microwave pretreatment at 140, 160 and 180 °C for 5, 10 and 15 min to obtain crude arabinoxylan (AX). Increasing microwave pretreatment time increased sugar content. Crude AX was extracted with 2% (w/v) sodium hydroxide at 25 °C for 24 h and used as a substrate for XOS production by commercial xylanases. Results showed that oligosaccharides produced by Pentopan Mono BG and Ultraflo Max provided xylobiose and xylotriose as the main products. AXOS was also present in the oligosaccharides that promoted growth of Lactobacillus spp. and resisted degradation by over 70% after exposure to simulated human digestion.


Assuntos
Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Oligossacarídeos/química , Oryza/química , Xilanos/química , Álcalis/química , Dissacarídeos/análise , Hidrólise , Micro-Ondas , Oryza/efeitos da radiação , Prebióticos/análise , Sementes/química , Trissacarídeos/análise
18.
Mol Biotechnol ; 64(1): 75-89, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34542815

RESUMO

Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.


Assuntos
Bifidobacterium adolescentis/metabolismo , Glucuronatos/metabolismo , Levilactobacillus brevis/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium adolescentis/genética , Biologia Computacional , Dissacarídeos/química , Dissacarídeos/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Genoma Bacteriano/genética , Glucuronatos/química , Humanos , Levilactobacillus brevis/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Probióticos/metabolismo , Trissacarídeos/química , Trissacarídeos/metabolismo , Xilosidases/química , Xilosidases/genética
19.
Carbohydr Polym ; 275: 118684, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742414

RESUMO

Bioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products. The conversion rate of complex substrates into short XOS was approximately 30% for glucuronoxylan and 8.8% for rye arabinoxylan, after only 4 h; while for PCC, PpXyn10A greatly increased unbranched XOS yields. B. adolescentis fermentation with XOS from beechwood glucuronoxylan produced mainly acetic and lactic acids. Structural analysis shows that while the glycone region of PpXyn10A active site is well preserved, the aglycone region has aromatic interactions in the +2 subsite that may explain why PpXyn10A does not release xylose.


Assuntos
Bacteroidetes , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/química , Oligossacarídeos/química , Xilanos/química , Animais , Bifidobacterium adolescentis/efeitos dos fármacos , Dissacarídeos/química , Fermentação , Glucuronatos/farmacologia , Humanos , Hidrólise , Oligossacarídeos/farmacologia , Prebióticos , Trissacarídeos/química , Xilose/química , Zea mays/química
20.
Biotechnol Lett ; 43(12): 2299-2310, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718907

RESUMO

OBJECTIVE: To develop an endo-ß-1,4-xylanase with high specificity for production of prebiotic xylooligosaccharides that optimally works at moderate temperature desirable to reduce the energy cost in the production process. RESULTS: The xylB gene, encoding for a glycosyl hydrolase family 11 xylanase from a thermoresistant fungus, Aspergillus niger BCC14405 was expressed in a methylotrophic yeast P. pastoris KM71 in a secreted form. The recombinant XylB showed a high specific activity of 3852 and 169 U mg-1 protein on beechwood xylan and arabinoxylan, respectively with no detectable side activities against different forms of cellulose (Avicel Ò PH101 microcrystalline cellulose, phosphoric acid swollen cellulose and carboxymethylcellulose). The enzyme worked optimally at 45 °C, pH 6.0. It showed a specific cleavage pattern by releasing xylobiose (X2) as the major product from xylooligosaccharides (X3 to X6) substrates. The highest XOS yield of 708 mg g-1 substrate comprising X2, X3 and X6 was obtained from beechwood xylan hydrolysis. CONCLUSION: The enzyme is potent for XOS production and for saccharification of lignocellulosic biomass.


Assuntos
Aspergillus niger/química , Endo-1,4-beta-Xilanases/genética , Glucuronatos/biossíntese , Oligossacarídeos/biossíntese , Xilanos/metabolismo , Aspergillus niger/enzimologia , Endo-1,4-beta-Xilanases/isolamento & purificação , Estabilidade Enzimática/genética , Glucuronatos/química , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos/química , Especificidade por Substrato , Temperatura , Xilanos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA