Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hepatol ; 17(6): 1026-1034, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30600292

RESUMO

INTRODUCTION AND AIM: Hepatic encephalopathy (HE), caused by hyperammonemia resulting from liver disease, is a spectrum of neuropsychiatric and motor disorders that can lead to death. Existing therapies are deficient and alternative treatments are needed. We have shown that gene therapy with a baculovirus vector containing the glutamine synthetase (Bac-GS) gene is efficient for reducing ammonia levels in an acute hyperammonemia rat model. However, the most common condition resulting from liver disease is chronic hyperammonemia. In this work, Bac-GS was evaluated in bile-duct ligated rats, a chronic liver disease model with hyperammonemia and some characteristics of Type C HE. MATERIAL AND METHODS: Bac-GS was tested for mediating GS overexpression in HeLa cells and H9C2 myotubes. For determining the utility of Bac-GS for the reduction of ammonia levels in a chronic hyperammonemia animal model, four groups of rats were treated: control, sham, ligated with Bac-GS and ligated with Bac-GFP. Baculoviruses were injected i.m. 18 days post-surgery. Blood was drawn 2, 3 and 4 weeks post-surgery and plasma ammonia concentrations were quantified. RESULTS: In protein lysates of cells and myotubes transduced with Bac-GS, a 44 kDa band corresponding to GS was detected. Significant results were obtained in the hyperammonemic bile-duct ligated rat model, as plasma ammonia was reduced to normal levels 3 days after treatment with Bac-GS. Furthermore, a transitory effect of Bac-GS was observed. CONCLUSION: Our results show that gene therapy by delivering GS is a promising alternative for treatment of hyperammonemia in acute-on-chronic liver failure patients with HE.


Assuntos
Baculoviridae/genética , Terapia Genética/métodos , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/terapia , Hiperamonemia/complicações , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Vetores Genéticos , Glutamato-Amônia Ligase/administração & dosagem , Células HeLa/citologia , Células HeLa/patologia , Encefalopatia Hepática/patologia , Humanos , Hiperamonemia/fisiopatologia , Distribuição Aleatória , Ratos , Fatores de Risco , Sensibilidade e Especificidade
2.
Yonsei Med J ; 44(1): 125-32, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12619185

RESUMO

Glutamine synthetase (GS) is a key enzyme in the regulation of glutamate neurotransmission in the central nervous system. It is responsible for converting glutamate to glutamine, consuming one ATP and NH3 in the process. Glutamate is neurotoxic when it accumulates in extracellular fluids. We investigated the effects of GS in both a spinal cord injury (SCI) model and normal rats. 0.1-ml of low (2- micro M) and high (55- micro M) concentrations of GS were applied, intrathecally, to the spinal cord of rats under pentobarbital anesthesia. Immediately after an intrathecal injection into the L1-L3 space, the rats developed convulsive movements. These movements initially consisted of myoclonic twitches of the paravertebral muscles close to the injection site, repeated tonic and clonic contractions and extensions of the hind limbs (hind limb seizures) that spread to the fore limbs, and finally rotational axial movements of the body. An EMG of the paravertebral muscles, fore and hind limbs, showed the extent of the muscle activities. GS (2- micro M) caused spinal seizures in the rats after the SCI, and GS (6- micro M) produced seizures in the uninjured anesthetized rats. Denatured GS (70 degrees C, 1 hour) also produced spinal seizures, although higher concentrations were required. We suggest that GS may be directly blocking the release of GABA, or the receptors, in the spinal cord.


Assuntos
Glutamato-Amônia Ligase , Convulsões/induzido quimicamente , Doenças da Medula Espinal/induzido quimicamente , Animais , Eletromiografia , Feminino , Glutamato-Amônia Ligase/administração & dosagem , Injeções Espinhais , Masculino , Ratos , Ratos Long-Evans , Convulsões/fisiopatologia , Doenças da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA