Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.567
Filtrar
1.
Biol Res ; 57(1): 30, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760850

RESUMO

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Assuntos
Ciclo Celular , Glioma , Glutaratos , Isocitrato Desidrogenase , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutação , Apoptose/genética , Proliferação de Células/genética , Animais , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Nus
2.
An Pediatr (Engl Ed) ; 100(5): 318-324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714461

RESUMO

INTRODUCTION: . Neonatal screening of glutaric aciduria type 1 (GA-1) has brought radical changes in the course and outcomes of this disease. This study analyses the outcomes of the first 5 years (2015-2019) of the AGA1 neonatal screening programme in our autonomous community. MATERIAL: . We conducted an observational, descriptive and retrospective study. All neonates born between January 1, 2015 and December 31, 2019 that participated in the neonatal screening programme were included in the study. The glutarylcarnitine (C5DC) concentration in dry blood spot samples was measured by means of tandem mass spectrometry applying a cut-off point of 0.25 µmol/L. RESULTS: . A total of 30 120 newborns underwent screening. We found differences in the C5DC concentration based on gestational age, type of feeding and hours of life at sample collection. These differences were not relevant for screening purposes. There were no differences between neonates with weights smaller and greater than 1500 g. Screening identified 2 affected patients and there were 3 false positives. There were no false negatives. The diagnosis was confirmed by genetic testing. Patients have been in treatment since diagnosis and have not developed encephalopathic crises in the first 4 years of life. CONCLUSIONS: . Screening allowed early diagnosis of two cases of GA-1 in the first 5 years since its introduction in our autonomous community. Although there were differences in C5DC levels based on gestational age, type of feeding and hours of life at blood extraction, they were not relevant for screening.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Triagem Neonatal , Humanos , Triagem Neonatal/métodos , Recém-Nascido , Estudos Retrospectivos , Glutaril-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Masculino , Feminino , Encefalopatias Metabólicas/diagnóstico , Espectrometria de Massas em Tandem , Glutaratos/sangue , Idade Gestacional , Carnitina/análogos & derivados
3.
Sci Adv ; 10(16): eadi1782, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630819

RESUMO

Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.


Assuntos
Glutaratos , Leucemia Mieloide Aguda , Lisina , Humanos , Necroptose , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653436

RESUMO

Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Glutaratos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Terapia de Alvo Molecular
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 630-633, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660877

RESUMO

Isocitrate dehydrogenase (IDH) is an enzymes involved in a variety of metabolic and epigenetic processes. IDH can be detected in approximately 20% of patients with acute myeloid leukemia (AML), the mutated IDH enzyme acquires new oncogenic enzyme activity and converts α-ketoglutaric acid (α-KG) to the tumor metabolite 2-hydroxyglutaric acid (2-HG), which accumulates at high levels in cells and hinders the function of αKG-dependent enzymes, including epigenetic regulators, resulting in DNA hypermethylation, abnormal gene expression, cell proliferation, and abnormal differentiation, and contributes to leukemia disease progression. IDH mutations have different effects on the prognosis of patients with AML depending on the location of the mutation and other co-occurring genomic abnormalities. This paper will review the latest research progress on the IDH positive AML gene changes, prognosis, and inhibitors.


Assuntos
Metilação de DNA , Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Mutação , Isocitrato Desidrogenase/genética , Humanos , Leucemia Mieloide Aguda/genética , Prognóstico , Epigênese Genética , Glutaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo
6.
J Vet Intern Med ; 38(3): 1370-1376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38485220

RESUMO

BACKGROUND: Corticosteroids are among the most commonly used drugs in cats and are increasingly discussed as a treatment for feline pancreatitis. However, its effects on serum lipase in healthy cats remain unknown. OBJECTIVES: To evaluate the effects of prednisolone on serum lipase activity and pancreatic lipase immunoreactivity (PLI) in cats. ANIMALS: Seven clinically healthy colony cats, aged 4 to 7 years, with unremarkable CBC/biochemistry panel were studied. METHODS: Prospective study: Prednisolone (1.1-1.5 mg/kg, median 1.28 mg/kg PO) was given daily for 7 consecutive days. Lipase activity (LIPC Roche; RI, 8-26 U/L) and PLI (Spec fPL; RI, 0-3.5 µg/L) were determined at day 1 before first treatment and at days 2, 3, 8, 10, and 14. Cats were examined daily. An a priori power analysis indicated that 6 cats were needed to find a biological relevant effect at 1-ß = 0.8. Statistical analyses comprised the Friedman test, random intercept regression, and repeated-measures linear regression. RESULTS: Median (range) day 1 lipase activities and PLI were 22 U/L (14-52 U/L) and 3.2 µg/L (2.3-15.7 µg/L). One cat with abnormally high lipase activity (52 U/L) and PLI (15.7 µg/L) at day 1 continued having elevated lipase activities and PLI throughout the study. Lipase activities and PLI concentrations did not differ significantly among time points regardless of whether the cat with elevated values was included or not. All cats remained healthy throughout the study. CONCLUSIONS AND CLINICAL IMPORTANCE: Administration of prednisolone in anti-inflammatory doses does not significantly increase serum lipase activity and PLI concentration.


Assuntos
Lipase , Pâncreas , Prednisolona , Animais , Gatos , Lipase/sangue , Lipase/metabolismo , Prednisolona/farmacologia , Prednisolona/administração & dosagem , Prednisolona/uso terapêutico , Masculino , Feminino , Pâncreas/enzimologia , Pâncreas/efeitos dos fármacos , Estudos Prospectivos , Glutaratos , Oxazinas
7.
Cancer Res Commun ; 4(3): 876-894, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38445960

RESUMO

IDH1mut gliomas produce high levels of D-2-hydroxyglutarate (D-2-HG), an oncometabolite capable of inhibiting α-ketoglutarate-dependent dioxygenases critical to a range of cellular functions involved in gliomagenesis. IDH1mut gliomas also exhibit slower growth rates and improved treatment sensitivity compared with their IDH1wt counterparts. This study explores the mechanism driving apparent reduced growth in IDH1mut gliomas. Specifically, we investigated the relationship between IDH1mut and the RNA N6-methyladenosine (m6A) demethylases FTO and ALKBH5, and their potential for therapeutic targeting. We investigated the role of D-2-HG and m6A in tumor proliferation/viability using glioma patient tumor samples, patient-derived gliomaspheres, and U87 cells, as well as with mouse intracranial IDH1wt gliomasphere xenografts. Methylation RNA immunoprecipitation sequencing (MeRIP-seq) RNA sequencing was used to identify m6A-enriched transcripts in IDH1mut glioma. We show that IDH1mut production of D-2-HG is capable of reducing glioma cell growth via inhibition of the m6A epitranscriptomic regulator, FTO, with resultant m6A hypermethylation of a set of mRNA transcripts. On the basis of unbiased MeRIP-seq epitranscriptomic profiling, we identify ATF5 as a hypermethylated, downregulated transcript that potentially contributes to increased apoptosis. We further demonstrate how targeting this pathway genetically and pharmacologically reduces the proliferative potential of malignant IDH1wt gliomas, both in vitro and in vivo. Our work provides evidence that selective inhibition of the m6A epitranscriptomic regulator FTO attenuates growth in IDH1wt glioma, recapitulating the clinically favorable growth phenotype seen in the IDH1mut subtype. SIGNIFICANCE: We show that IDH1mut-generated D-2-HG can reduce glioma growth via inhibition of the m6A demethylase, FTO. FTO inhibition represents a potential therapeutic target for IDH1wt gliomas and possibly in conjunction with IDH1mut inhibitors for the treatment of IDH1mut glioma. Future studies are necessary to demonstrate the role of ATF5 downregulation in the indolent phenotype of IDH1mut gliomas, as well as to identify other involved gene transcripts deregulated by m6A hypermethylation.


Assuntos
Adenina/análogos & derivados , Glioma , Glutaratos , Humanos , Animais , Camundongos , Glioma/tratamento farmacológico , RNA/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
8.
J Neurooncol ; 167(2): 305-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424338

RESUMO

PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.


Assuntos
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mutação
9.
Mol Pharm ; 21(3): 1479-1489, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38373877

RESUMO

In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.


Assuntos
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopia de Ressonância Magnética
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 199-204, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311559

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic variants of two children with 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD). METHODS: Two children with HMGCLD diagnosed at Henan Provincial Children's Hospital respectively in December 2019 and June 2022 were selected as the study subjects. Clinical data and results of laboratory testing were analyzed retrospectively. RESULTS: Both children had manifested with repeated convulsions, severe hypoglycemia, metabolic acidosis and liver dysfunction. Blood amino acids and acylcarnitine analysis showed increased 3-hydroxy-isovalyl carnitine (C5OH) and 3-hydroxy-isovalyl carnitine/capryloyl carnitine ratio (C5OH/C8), and urinary organic acid analysis showed increased 3-hydroxyl-3-methyl glutaric acid, 3-methyl glutaric acid, 3-methyl glutaconic acid, 3-hydroxyisoglycine and 3-methylprotarylglycine. Child 1 was found to harbor homozygous c.722C>T variants of the HMGCL gene, which was rated as uncertain significance (PM2_Supporting+PP3). Child 2 was found to harbor homozygous c.121C>T variants of the HMGCL gene, which was rated as pathogenic variant (PVS1+PM2_Supporting+PP4). CONCLUSION: Acute episode of HMGCLD is usually characterized by metabolic disorders such as hypoglycemia and metabolic acidosis, and elevated organic acids in urine may facilitate the differential diagnosis, though definite diagnosis will rely on genetic testing.


Assuntos
Acetil-CoA C-Acetiltransferase , Acidose , Erros Inatos do Metabolismo dos Aminoácidos , Glutaratos , Hipoglicemia , Meglutol , Doenças Metabólicas , Criança , Humanos , Acetil-CoA C-Acetiltransferase/deficiência , Acidose/genética , Carnitina , Hipoglicemia/genética , Meglutol/análogos & derivados , Estudos Retrospectivos
11.
Nat Commun ; 15(1): 1032, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310110

RESUMO

Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.


Assuntos
Escherichia coli , Glutaratos , Escherichia coli/genética , Escherichia coli/metabolismo , Glutaratos/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Aldeído Desidrogenase/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38191174

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in IDH1 and IDH2 occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). (R)-2HG accumulation in IDH-mutant tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of (R)-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, (R)-2HG has many other effects in IDH-mutant cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated IDH mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target IDH-mutant tumors.


Assuntos
Isocitrato Desidrogenase , Mutação , Neoplasias , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Neoplasias/genética , Epigênese Genética , Glutaratos/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Animais
13.
J Biomed Mater Res B Appl Biomater ; 112(1): e35361, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247245

RESUMO

Type-A aortic dissection is an acute injury involving the delamination of the aorta at the parts of the aortic media. Aldehyde crosslinker-containing glues have been used to adhere to the media of the dissected aorta before joining an artificial graft. These glues effectively adhere to the aortic media; however, they show low biocompatibility due to the release of aldehyde compounds. In this study, we report innovative adhesives based on hydrophobically modified Alaska pollock gelatin (hm-ApGltn) with different alkyl or cholesteryl (Chol) groups that adhere to the media of the dissected aorta by combining hm-ApGltns with a biocompatible crosslinker, pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate. The modification of alkyl or Chol groups contributed to enhanced adhesion strength between porcine aortic media. The adhesion strength increased with increasing modification ratios of alkyl groups from propanoyl to dodecanoyl groups and then decreased at a modification ratio of ~20 mol %. Porcine aortic media adhered using 7.5Chol-ApGltn adhesive showed stretchability even when expanded and shrunk vertically by 25% at least five times. Hm-ApGltn adhesives subcutaneously injected into the backs of mice showed no severe inflammation and were degraded during the implantation period. These results indicated that hm-ApGltn adhesives have potential applications in type-A aortic dissection.


Assuntos
Dissecção Aórtica , Gelatina , Glutaratos , Polietilenoglicóis , Animais , Camundongos , Suínos , Gelatina/farmacologia , Alaska , Aorta , Aderências Teciduais , Aldeídos
14.
J Med Chem ; 67(6): 4525-4540, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38294854

RESUMO

Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.


Assuntos
Dioxigenases , Glutaratos , Oxigenases , Humanos , Epigênese Genética , Oxigenases de Função Mista , Dioxigenases/metabolismo , DNA , Metilação de DNA , Proteínas Proto-Oncogênicas/metabolismo
15.
Mol Cancer Ther ; 23(3): 394-399, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38015561

RESUMO

Isocitrate dehydrogenase (IDH) enzymes catalyze the decarboxylation of isocitrate to alpha-ketoglutarate (αKG). IDH1/2 mutations preferentially convert αKG to R-2-hydroxyglutarate (R2HG), resulting in R2HG accumulation in tumor tissues. We investigated circulating 2-hydroxyglutate (2HG) as potential biomarkers for patients with IDH-mutant (IDHmt) cholangiocarcinoma (CCA). R2HG and S-2-hydroxyglutarate (S2HG) levels in blood and tumor tissues were analyzed in a discovery cohort of patients with IDHmt glioma and CCA. Results were validated in cohorts of patients with CCA and clear-cell renal cell carcinoma. The R2HG/S2HG ratio (rRS) was significantly elevated in tumor tissues, but not in blood for patients with IDHmt glioma, while circulating rRS was elevated in patients with IDHmt CCA. There were overlap distributions of circulating R2HG and total 2HG in patients with both IDHmt and wild-type (IDHwt) CCA, while there was minimal overlap in rRS values between patients with IDHmt and IDHwt CCA. Using the rRS cut-off value of 1.5, the sensitivity of rRS was 90% and specificity was 96.8%. Circulating rRS is significantly increased in patients with IDHmt CCA compare with patients with IDHwt CCA. Circulating rRS is a sensitive and specific surrogate biomarker for IDH1/2 mutations in CCA. It can potentially be used as a tool for monitoring IDH-targeted therapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Glioma , Glutaratos , Humanos , Isocitrato Desidrogenase/genética , Biomarcadores , Glioma/patologia , Mutação , Ácidos Cetoglutáricos , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética
16.
J Dairy Sci ; 107(4): 2556-2571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939839

RESUMO

We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including ß-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.


Assuntos
Suplementos Nutricionais , Glutaratos , Ácido Chiquímico , Feminino , Bovinos , Animais , Ácido Chiquímico/análise , Ácido Chiquímico/metabolismo , Ácido Chiquímico/farmacologia , Suplementos Nutricionais/análise , Lactação , Leite/química , Dieta/veterinária , Metaboloma , Rúmen/metabolismo , Fermentação , Ração Animal/análise
17.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995940

RESUMO

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Assuntos
Oxirredutases do Álcool , Encefalopatias Metabólicas Congênitas , Drosophila melanogaster , Modelos Moleculares , Animais , Humanos , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Drosophila melanogaster/enzimologia , Glutaratos/metabolismo , Mutação , Domínio Catalítico/genética , Especificidade por Substrato/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Cell Rep ; 42(9): 113013, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632752

RESUMO

2-Hydroxyglutarate (2HG) is a byproduct of the tricarboxylic acid (TCA) cycle and is readily detected in the tissues of healthy individuals. 2HG is found in two enantiomeric forms: S-2HG and R-2HG. Here, we investigate the differential roles of these two enantiomers in cluster of differentiation (CD)8+ T cell biology, where we find they have highly divergent effects on proliferation, differentiation, and T cell function. We show here an analysis of structural determinants that likely underlie these differential effects on specific α-ketoglutarate (αKG)-dependent enzymes. Treatment of CD8+ T cells with exogenous S-2HG, but not R-2HG, increased CD8+ T cell fitness in vivo and enhanced anti-tumor activity. These data show that S-2HG and R-2HG should be considered as two distinct and important actors in the regulation of T cell function.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo , Neoplasias/metabolismo , Isocitrato Desidrogenase
19.
Nat Metab ; 5(10): 1649-1651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37605056
20.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605057

RESUMO

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Assuntos
Fenômenos Bioquímicos , Linfócitos T CD8-Positivos , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA