Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.546
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720588

RESUMO

There is still considerable controversy about the relative risk of mycotoxin exposure associated with the consumption of organic and conventional cereals. Using validated protocols, we carried out a systematic literature review and meta-analyses of data on the incidence and concentrations of mycotoxins produced by Fusarium, Claviceps, Penicillium, and Aspergillus species in organic and conventional cereal grains/products. The standard weighted meta-analysis of concentration data detected a significant effect of production system (organic vs. conventional) only for the Fusarium mycotoxins deoxynivalenol, with concentrations ∼50% higher in conventional than organic cereal grains/products (p < 0.0001). Weighted meta-analyses of incidence data and unweighted meta-analyses of concentration data also detected small, but significant effects of production system on the incidence and/or concentrations of T-2/HT-2 toxins, zearalenone, enniatin, beauvericin, ochratoxin A (OTA), and aflatoxins. Multilevel meta-analyses identified climatic conditions, cereal species, study type, and analytical methods used as important confounding factors for the effects of production system. Overall, results from this study suggest that (i) Fusarium mycotoxin contamination decreased between the 1990s and 2020, (ii) contamination levels are similar in organic and conventional cereals used for human consumption, and (iii) maintaining OTA concentrations below the maximum contamination levels (3.0 µg/kg) set by the EU remains a major challenge.


Assuntos
Grão Comestível , Contaminação de Alimentos , Micotoxinas , Grão Comestível/química , Grão Comestível/microbiologia , Micotoxinas/análise , Contaminação de Alimentos/análise , Fusarium/química , Alimentos Orgânicos/análise , Alimentos Orgânicos/microbiologia
2.
Nutrients ; 16(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732559

RESUMO

(1) Background: Fortifying maize and wheat flours with folic acid has effectively reduced neural tube defect-affected births. However, maize and wheat flours may not be widely consumed in all countries; further reduction in neural tube defect-affected births could benefit from the identification of alternative food vehicles. We aimed to use dietary intake or apparent consumption data to determine alternative food vehicles for large-scale fortification with folic acid in low-income and lower-middle-income countries (LILMICs) and identify current research related to examining the technological feasibility of fortifying alternative foods with folic acid. (2) Methods: We identified 81 LILMICs, defined by the World Bank's (WB) 2018 income classifications. To identify dietary intake or apparent consumption, we reviewed WB's Microdata Library and Global Health Data Exchange for national surveys from 1997-2018. We reviewed survey reports for dietary intake or apparent consumption data and analyzed survey datasets for population coverage of foods. We defined alternative food vehicles as those that may cover/be consumed by ≥30% of the population or households; cereal grains (maize and wheat flours and rice) were included as an alternative food vehicle if a country did not have existing mandatory fortification legislation. To identify current research on fortification with folic acid in foods other than cereal grains, we conducted a systematic review of published literature and unpublished theses, and screened for foods or food products. (3) Results: We extracted or analyzed data from 18 national surveys and countries. The alternative foods most represented in the surveys were oil (n = 16), sugar (n = 16), and salt (n = 14). The coverage of oil ranged from 33.2 to 95.7%, sugar from 32.2 to 98.4%, and salt from 49.8 to 99.9%. We found 34 eligible studies describing research on alternative foods. The most studied alternative foods for fortification with folic acid were dairy products (n = 10), salt (n = 6), and various fruit juices (n = 5). (4) Conclusions: Because of their high coverage, oil, sugar, and salt emerge as potential alternative foods for large-scale fortification with folic acid. However, except for salt, there are limited or no studies examining the technological feasibility of fortifying these foods with folic acid.


Assuntos
Grão Comestível , Ácido Fólico , Alimentos Fortificados , Defeitos do Tubo Neural , Triticum , Ácido Fólico/administração & dosagem , Humanos , Defeitos do Tubo Neural/prevenção & controle , Triticum/química , Grão Comestível/química , Farinha/análise , Zea mays/química , Países em Desenvolvimento
3.
Food Funct ; 15(9): 4682-4702, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590246

RESUMO

Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Polifenóis , Grãos Integrais , Polifenóis/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Humanos , Grãos Integrais/química , Grãos Integrais/metabolismo , Animais , Grão Comestível/química
4.
Int J Biol Macromol ; 267(Pt 1): 131522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614175

RESUMO

Glutinous sorghum grains were soaked (60-80 °C, 2-8 h) to explore the effects of soaking, an essential step in industrial processing of brewing, on starch. As the soaking temperature increased, the peak viscosity and crystallinity of starch gradually decreased, while the enzymatic hydrolysis rate and storage modulus first increased and then decreased. At 70 °C, the content of amylose, the enzymatic hydrolysis rate of starch, and the final viscosity first increase and then decrease with the increase of soaking time, reaching their maximum at 6 h, increased by 53.1 %, 11.0 %, and 10.4 %, respectively, as compared with the non-soaked sample. At 80 °C (4 h), the laser confocal microscopy images showed a network structure formed between the denatured protein chains and the leached-out amylose chains. The molecular weights of starch before and after soaking were all in the range of 3.82-8.98 × 107 g/mol. Since 70 °C is lower than that of starch gelatinization and protein denaturation, when soaking for 6 h, the enzymatic hydrolysis rate of starch is the highest, and the growth of miscellaneous bacteria is inhibited, which is beneficial for subsequent processing technology. The result provides a theoretical basis for the intelligent control of glutinous sorghum brewing.


Assuntos
Amilose , Fenômenos Químicos , Sorghum , Amido , Sorghum/química , Amido/química , Hidrólise , Amilose/química , Viscosidade , Grão Comestível/química , Temperatura , Peso Molecular
5.
Methods Mol Biol ; 2787: 257-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656495

RESUMO

Here, we propose a method to convert the organic nitrogen in maize kernels into ammonia in solution and then chlorinate it to prepare monochloride salts, which can form an oxidatively coupled blue-green mixture with sodium salicylate and sodium dichloroisocyanurate. The concentration of ammonium ions in the blue-green mixture can then be determined in the solution, and finally the protein content in maize kernels can be calculated from the nitrogen content.


Assuntos
Colorimetria , Grão Comestível , Proteínas de Plantas , Zea mays , Colorimetria/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Grão Comestível/química , Zea mays/química , Zea mays/metabolismo , Nitrogênio/química , Sementes/química , Sementes/metabolismo
6.
Environ Monit Assess ; 196(5): 462, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642132

RESUMO

Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.


Assuntos
Solo , Sorghum , Solo/química , Carbono/análise , Monitoramento Ambiental , Agricultura , Grão Comestível/química
7.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629562

RESUMO

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Solo , Areia , Ácido Cítrico , Poluentes do Solo/análise , China , Grão Comestível/química
8.
Huan Jing Ke Xue ; 45(5): 3027-3036, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629563

RESUMO

Biochar and modified biochar have been widely used as remediation materials in heavy metal-contaminated agricultural soils. In order to explore economical and effective materials for the remediation of cadmium (Cd)-contaminated acidic purple soil, distillers 'grains were converted into distillers' grains biochar (DGBC) and modified using nano-titanium dioxide (Nano-TiO2) to produce two types of modified DGBCs:TiO2/DGBC and Fe-TiO2/DGBC. A rice pot experiment was used to investigate the effects of different biochar types and application rates (1%, 3%, and 5%) on soil properties, nutrient content, Cd bioavailability, Cd forms, rice growth, and Cd accumulation. The results showed that:① DGBC application significantly increased soil pH, cation exchange capacity (CEC), and nutrient content, with TiO2/DGBC and Fe-TiO2/DGBC exhibiting better effects. ② DGBC and modified DGBCs transformed Cd from soluble to insoluble forms, increasing residual Cd by 1.22% to 18.46% compared to that in the control. Cd bioavailability in soil decreased significantly, with available cadmium being reduced by 11.81% to 23.67% for DGBC, 7.64% to 43.85% for TiO2/DGBC, and 19.75% to 55.82% for Fe-TiO2/DGBC. ③ DGBC and modified DGBCs increased rice grain yield, with the highest yields observed at a 3% application rate:30.60 g·pot-1 for DGBC, 37.85 g·pot-1 for TiO2/DGBC, and 39.10 g·pot-1 for Fe-TiO2/DGBC, representing 1.13, 1.40, and 1.44 times the control yield, respectively. Cd content in rice was significantly reduced, with grain Cd content ranging from 0.24 to 0.30 mg·kg-1 for DGBC, 0.16 to 0.26 mg·kg-1 for TiO2/DGBC, and 0.14 to 0.24 mg·kg-1 for Fe-TiO2/DGBC. Notably, Cd content in rice grains fell below the food safety limit of 0.2 mg·kg-1 (GB2762-2022) at 5% for TiO2/DGBC and 3% and 5% for Fe-TiO2/DGBC. In conclusion, Nano-TiO2 modified DGBC effectively reduced the bioavailability of soil Cd through its own adsorption and influence on soil Cd forms distribution, thus reducing the absorption of Cd by rice and simultaneously promoting rice growth and improving rice yield. It is a type of Cd-contaminated soil remediation material with a potential application prospect. The results can provide scientific basis for farmland restoration and agricultural safety production of Cd-contaminated acidic purple soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Grão Comestível/química
9.
Glob Chang Biol ; 30(4): e17277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634544

RESUMO

More than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO2 assimilated by plants. A first cradle-to-grave life cycle assessment was performed to quantify the CF of the N fertilizers' production, transportation, and application to the field and the uses of the produced biomass in livestock feed and human food, as well as biofuel production. We quantified the direct and indirect inventories emitted or sequestered by N fertilization of main grain crops: wheat, maize, and rice. Grain food produced with N fertilization had a net CF of 7.4 Gt CO2eq. in 2019 after excluding the assimilated C in plant biomass, which accounted for a quarter of the total CF. The cradle (fertilizer production and transportation), gate (fertilizer application, and soil and plant systems), and grave (feed, food, biofuel, and losses) stages contributed to the CF by 2%, 11%, and 87%, respectively. Although Asia was the top grain producer, North America contributed 38% of the CF due to the greatest CF of the grave stage (2.5 Gt CO2eq.). The CF of grain crops will increase to 21.2 Gt CO2eq. in 2100, driven by the rise in N fertilization to meet the growing food demand without actions to stop the decline in N use efficiency. To meet the targets of climate change, we introduced an ambitious mitigation strategy, including the improvement of N agronomic efficiency (6% average target for the three crops) and manufacturing technology, reducing food losses, and global conversion to healthy diets, whereby the CF can be reduced to 5.6 Gt CO2eq. in 2100.


Assuntos
Pegada de Carbono , Nitrogênio , Humanos , Fertilizantes/análise , Biocombustíveis , Agricultura , Solo , Produtos Agrícolas , Grão Comestível/química , China , Carbono/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-38673295

RESUMO

Infant cereals, one of the first solid foods introduced to infants, have been reported to pose risks to human health because they contain toxic elements and an excess of essential elements. The objective of this study was to assess the cancer and non-cancer risk of exposure to essential and toxic elements in infant cereal in Brazil. In our analyses, we included data from 18 samples of infant cereals made from different raw materials and estimated the incremental lifetime cancer risks and non-cancer hazard quotients (HQs) for their consumption. Rice cereal is particularly concerning because it is immensely popular and usually contains high levels of inorganic arsenic. In addition to arsenic, we assessed aluminum, boron, barium, cadmium, chromium, copper, lead, manganese, nickel, selenium, silver, strontium, and zinc. The cancer risk was highest for rice cereal, which was also found to have an HQ > 1 for most of the tested elements. Inorganic As was the element associated with the highest cancer risk in infant cereal. All of the infant cereals included in this research contained at least one element with an HQ > 1. The essential and non-essential elements that presented HQ > 1 more frequently were zinc and cadmium, respectively. The cancer and non-cancer risks could potentially be decreased by reducing the amount of toxic and essential elements (when in excess), and public policies could have a positive influence on risk management in this complex scenario.


Assuntos
Grão Comestível , Brasil , Medição de Risco , Humanos , Grão Comestível/química , Lactente , Alimentos Infantis/análise , Contaminação de Alimentos/análise , Exposição Dietética/análise , Oligoelementos/análise , Oligoelementos/toxicidade , Arsênio/análise , Arsênio/toxicidade , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente
11.
Compr Rev Food Sci Food Saf ; 23(3): e13355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685870

RESUMO

Resistant starch type 3 (RS3), often found in cooked starchy food, has various health benefits due to its indigestible properties and physiological functions such as promoting the abundance of gut beneficial microbial flora and inhibiting the growth of intestinal pathogenic bacteria. However, it is challenging to develop starchy food with high RS3 content. This review aims to provide a detailed overview of current advancements to enhance RS3 content in starchy food and its effects of RS3 on gut microbiota. These approaches include breeding high-amylose cereals through gene editing techniques, processing, enzyme treatments, storage, formation of RS3 nanoparticles, and the incorporation of bioactive compounds. The mechanisms, specific conditions, advantages, and disadvantages associated with each approach and the potential effects of RS3 prepared by different methods on gut microbiota are summarized. In conclusion, this review contains important information that aims to provide guidelines for developing an efficient RS3 preparation process and promote the consumption of RS3-enriched starchy foods to improve overall health outcomes.


Assuntos
Microbioma Gastrointestinal , Amido , Amido/química , Humanos , Amido Resistente , Grão Comestível/química , Animais
12.
PLoS One ; 19(4): e0299785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598442

RESUMO

Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 µg TPF g-1 soil hr-1), arylsulfatase activity (82.8 µg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.


Assuntos
Solo , Triticum , Triticum/genética , Água/análise , Clorofila , Biomassa , Grão Comestível/química
13.
J Agric Food Chem ; 72(17): 10149-10161, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635353

RESUMO

The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.


Assuntos
Aquaporinas , Germinação , Hordeum , Proteínas de Plantas , Sementes , Água , Hordeum/metabolismo , Hordeum/genética , Hordeum/química , Hordeum/crescimento & desenvolvimento , Aquaporinas/metabolismo , Aquaporinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Água/metabolismo , Sementes/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/genética , Melhoramento Vegetal , Grão Comestível/metabolismo , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Proteômica
14.
Food Chem ; 449: 139237, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581780

RESUMO

Whole grains (WG) are beneficial to health but have reduced sensory quality, partly attributable to inhibition of Maillard reaction products (MRP) by WG phenolics. The study investigated how major flavonoid classes in cereals affect Maillard reaction pathways. Flavonoids were reacted with xylose-lysine aqueous system at 160 °C/12 min. Additionally, breads were made with catechin, and wheat and sorghum bran fortification. Low Mw MRP were profiled using UPLC-MS/MS, while melanoidins were characterized using fluorescence spectroscopy and HPSEC-MALS. The flavonoids significantly (p < 0.05) reduced both melanoidin content (by 33-86%) and Mw (3.5-15 kDa vs 20 kDa control), leading to lighter bread crust. Flavonoids inhibited MRP via direct condensation with early-stage amines and carbonyls into stable adducts, and reduction of late-stage polymerization reactions, increasing accumulation of cyclic N-containing intermediates. Inhibitory trend was flavones>flavanones>flavanols. C-Ring π-bond dramatically enhance flavonoid MRP inhibition; thus flavone-rich cereal grains are likely to strongly impact MRP-dependent sensory attributes of WG products.


Assuntos
Pão , Grão Comestível , Flavonoides , Reação de Maillard , Flavonoides/química , Flavonoides/farmacologia , Grão Comestível/química , Pão/análise , Manipulação de Alimentos , Triticum/química , Espectrometria de Massas em Tandem
15.
Sci Total Environ ; 923: 171491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447720

RESUMO

The presence of high concentrations of arsenic (As) in agricultural soils and its subsequent accumulation in rice crop is a serious issue threatening sustainability of agriculture and human health. In the present work, remediation of As contaminated field in Nadia, West Bengal, India was done through the cultivation of Vetiver (Vetiveria zizanoides L. Nash) and the same field was subsequently used for rice (Oryza sativa L.) cultivation. The results showed that V. zizanoides could reduce As concentrations in the field to bring it lower than the maximum permissible limit (20 mg kg-1) in 11 months' time. The rice plants grown in remediated field showed improvement in growth and photosynthesis parameters as compared to that of contaminated field. Importantly, yield related parameters (filled seed, 1000 grain weight, number of panicles etc.) were also significantly higher in remediated field than that in contaminated field. Arsenic concentration in roots, shoot, husk and grains of rice was found to be significantly lower in remediated field than in contaminated field. Grain As decreased from 0.75 to 0.77 µg g-1 dw in contaminated field to 0.15-0.18 µg g-1 dw. In conclusion, replacing rice for single year with V. zizanoides crop can significantly remediate the field and can be a viable option.


Assuntos
Arsênio , Vetiveria , Oryza , Poluentes do Solo , Humanos , Arsênio/análise , Poluentes do Solo/análise , Sementes/química , Solo , Grão Comestível/química
16.
Anal Bioanal Chem ; 416(12): 2929-2939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491149

RESUMO

Deoxynivalenol (DON) is a mycotoxin that widely distributes in various foods and seriously threatens food safety. To minimize the consumers' dietary exposure to DON, there is an urgent demand for developing rapid and sensitive detection methods for DON in food. In this study, a bifunctional single-chain variable fragment (scFv) linked alkaline phosphatase (ALP) fusion protein was developed for rapid and sensitive detection of deoxynivalenol (DON). The scFv gene was chemically synthesized and cloned into the expression vector pET25b containing the ALP gene by homologous recombination. The prokaryotic expression, purification, and activity analysis of fusion proteins (scFv-ALP and ALP-scFv) were well characterized and performed. The interactions between scFv and DON were investigated by computer-assisted simulation, which included hydrogen bonds, hydrophobic interactions, and van der Waals forces. The scFv-ALP which showed better bifunctional activity was selected for developing a direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for DON in cereals. The dc-ELISA takes 90 min for one test and exhibits a half inhibitory concentration (IC50) of 11.72 ng/mL, of which the IC50 was 3.08-fold lower than that of the scFv-based dc-ELISA. The developed method showed high selectivity for DON, and good accuracy was obtained from the spike experiments. Furthermore, the detection results of actual cereal samples analyzed by the method correlated well with that determined by high-performance liquid chromatography (R2=0.97165). These results indicated that the scFv-ALP is a promising bifunctional probe for developing the one-step colorimetric immunoassay, providing a new strategy for rapid and sensitive detection of DON in cereals.


Assuntos
Fosfatase Alcalina , Grão Comestível , Ensaio de Imunoadsorção Enzimática , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Tricotecenos , Tricotecenos/análise , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Grão Comestível/química , Fosfatase Alcalina/química , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Contaminação de Alimentos/análise , Limite de Detecção
17.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467298

RESUMO

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Assuntos
Grão Comestível , Tropanos , Atropina , Grão Comestível/química , República da Coreia , Medição de Risco , Escopolamina/toxicidade , Tropanos/análise , Tropanos/química , Alcaloides/análise , Alcaloides/química
18.
J Agric Food Chem ; 72(12): 6638-6650, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482854

RESUMO

Accurate quantification of mycotoxin in cereals is crucial for ensuring food safety and human health. However, the preparation of traditional multisample external calibration curves (MSCCs) is labor-intensive and error-prone. Here, a multiple isotopologue reaction-monitoring (MIRM)-LC-MS/MS method for accurate quantitation of ten major mycotoxins in cereals was successfully developed and validated, where a novel one-sample multipoint calibration curve (OSCC) strategy is used instead of MSCCs. The OSCC can be established by examining the correlation between the calculated theoretical isotopic abundances and the measured abundance across various MIRM channels. In comparison to the MSCC, the OSCC strategy exhibits outstanding performance including superior selectivity, accuracy (78.4-108.6%), and precision (<12.5%). Furthermore, the proposed OSCC-MIRM-LC-MS/MS method was successfully applied to investigate mycotoxin contamination in cereal samples in China. Considering the advantages of simplified workflows and improved throughput, the OSCC-MIRM-LC-MS/MS methodology holds great promise for accurately quantifying chemical contaminants in foods.


Assuntos
Micotoxinas , Humanos , Micotoxinas/análise , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida , Grão Comestível/química , Espectrometria de Massas em Tandem/métodos
19.
J Agric Food Chem ; 72(12): 6089-6095, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483189

RESUMO

Acrylamide is a probable carcinogen in humans and is formed when reducing sugars react with free asparagine (Asn) during thermal processing of food. Although breeding for low reducing sugars worked well in potatoes, it is less successful in cereals. However, reducing free Asn in cereals has great potential for reducing acrylamide formation, despite the role that Asn plays in nitrogen transport and amino acid biosynthesis. In this perspective, we summarize the efforts aimed at reducing free Asn in cereal grains and discuss the potentials and challenges associated with targeting this essential amino acid, especially in a seed-specific manner.


Assuntos
Acrilamida , Asparagina , Humanos , Asparagina/química , Acrilamida/análise , Melhoramento Vegetal , Sementes/química , Açúcares/análise , Grão Comestível/química , Temperatura Alta
20.
Carbohydr Polym ; 334: 122029, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553229

RESUMO

To investigate the incubation conditions encountered by enzymes in cereal-based product transformation processes, this study aims to provide comprehensive information on the effect of low (18 %) to high (72 %) solid loading on the behavior of bacterial and fungal xylanases towards wheat grain fractions, i.e. white flour, ground whole grain and bran. Both enzymes are effective from 30 % water content. A water content of 50 % appears as the threshold for optimal arabinoxylan solubilisation. The specificity of enzymes was influenced by low hydration conditions, particularly in wheat bran, which contains arabinoxylan with diverse structures. Especially the bacterial xylanase became more tolerant to arabinose substitution as the water content decreased. Time Domain-NMR measurements revealed four water mobility domains in all the fractions. The water populations corresponding to 7.5 nm to 15 nm pores were found to be the most restrictive for enzyme activity. These results define the water content limits for the optimal xylanase action in cereal products.


Assuntos
Endo-1,4-beta-Xilanases , Xilanos , Endo-1,4-beta-Xilanases/química , Xilanos/química , Fibras na Dieta/análise , Farinha , Espectroscopia de Ressonância Magnética , Grão Comestível/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA