Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
2.
Adv Sci (Weinh) ; 11(18): e2306129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447146

RESUMO

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.


Assuntos
Gravitropismo , Robótica , Robótica/métodos , Robótica/instrumentação , Gravitropismo/fisiologia , Desenho de Equipamento/métodos , Metais/química , Cristais Líquidos , Plantas
3.
Plant Physiol ; 195(3): 1969-1980, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38446735

RESUMO

Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.


Assuntos
Etilenos , Gravitropismo , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Zea mays , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Gravitropismo/efeitos dos fármacos , Gravitropismo/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Oryza/genética , Oryza/fisiologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/fisiologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Mutação/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Plant Physiol ; 195(2): 1586-1600, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478430

RESUMO

Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Gravitropismo , Oryza , Folhas de Planta , Proteínas de Plantas , Brotos de Planta , Fatores de Transcrição , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Gravitropismo/genética , Gravitropismo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Fenótipo
5.
Nat Commun ; 15(1): 2648, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531848

RESUMO

Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Proteínas de Arabidopsis/metabolismo , Água/metabolismo , Parede Celular/metabolismo
6.
Plant Physiol ; 195(2): 1229-1255, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366651

RESUMO

Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.


Assuntos
Gravitropismo , Ácidos Indolacéticos , Proteínas de Plantas , Prunus persica , Ácidos Indolacéticos/metabolismo , Gravitropismo/fisiologia , Gravitropismo/genética , Prunus persica/genética , Prunus persica/fisiologia , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Gravitação , Árvores/fisiologia , Árvores/genética
7.
Plant J ; 118(6): 1732-1746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394056

RESUMO

Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.


Assuntos
Gravitropismo , Reguladores de Crescimento de Plantas , Raízes de Plantas , Água , Gravitropismo/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Água/metabolismo , Tropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo
8.
J Exp Bot ; 75(2): 620-630, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37869982

RESUMO

Plant organs adapt their morphology according to environmental signals through growth-driven processes called tropisms. While much effort has been directed towards the development of mathematical models describing the tropic dynamics of aerial organs, these cannot provide a good description of roots due to intrinsic physiological differences. Here we present a mathematical model informed by gravitropic experiments on Arabidopsis thaliana roots, assuming a subapical growth profile and apical sensing. The model quantitatively recovers the full spatio-temporal dynamics observed in experiments. An analytical solution of the model enables us to evaluate the gravitropic and proprioceptive sensitivities of roots, while also allowing us to corroborate the requirement for proprioception in describing root dynamics. Lastly, we find that the dynamics are analogous to a damped harmonic oscillator, providing intuition regarding the source of the observed oscillatory behavior and the importance of proprioception for efficient gravitropic control. In all, the model provides not only a quantitative description of root tropic dynamics, but also a mathematical framework for the future investigation of roots in complex media.


Assuntos
Arabidopsis , Gravitropismo , Gravitropismo/fisiologia , Raízes de Plantas , Arabidopsis/fisiologia , Tropismo
9.
Plant Physiol ; 194(4): 2697-2708, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156361

RESUMO

Plant roots sense many physical and chemical cues in soil, such as gravity, humidity, light, and chemical gradients, and respond by redirecting their growth toward or away from the source of the stimulus. This process is called tropism. While gravitropism is the tendency to follow the gravitational field downwards, electrotropism is the alignment of growth with external electric fields and the induced ionic currents. Although root tropisms are at the core of their ability to explore large volumes of soil in search of water and nutrients, the molecular and physical mechanisms underlying most of them remain poorly understood. We have previously provided a quantitative characterization of root electrotropism in Arabidopsis (Arabidopsis thaliana) primary roots exposed for 5 h to weak electric fields, showing that auxin asymmetric distribution is not necessary for root electrotropism but that cytokinin biosynthesis is. Here, we extend that study showing that long-term electrotropism is characterized by a complex behavior. We describe overshoot and habituation as key traits of long-term root electrotropism in Arabidopsis and provide quantitative data about the role of past exposures in the response to electric fields (hysteresis). On the molecular side, we show that cytokinin, although necessary for root electrotropism, is not asymmetrically distributed during the bending. Overall, the data presented here represent a step forward toward a better understanding of the complexity of root behavior and provide a quantitative platform for future studies on the molecular mechanisms of electrotropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Habituação Psicofisiológica , Raízes de Plantas , Gravitropismo/fisiologia , Ácidos Indolacéticos , Citocininas , Solo
10.
Curr Biol ; 33(23): R1224-R1226, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052169

RESUMO

Plant gravitropism has fascinated scientists for centuries. A new study provides a major mechanistic update of the so-called starch/statolith hypothesis, revealing how gravity perception is converted into a physiological response.


Assuntos
Arabidopsis , Gravitropismo , Gravitropismo/fisiologia , Arabidopsis/fisiologia , Sensação Gravitacional/fisiologia , Plantas , Amido , Plastídeos/fisiologia
11.
Proc Natl Acad Sci U S A ; 120(42): e2306655120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816057

RESUMO

Mounting evidence suggests that plants engage complex computational processes to quantify and integrate sensory information over time, enabling remarkable adaptive growth strategies. However, quantitative understanding of these computational processes is limited. We report experiments probing the dependence of gravitropic responses of wheat coleoptiles on previous stimuli. First, building on a mathematical model that identifies this dependence as a form of memory, or a filter, we use experimental observations to reveal the mathematical principles of how coleoptiles integrate multiple stimuli over time. Next, we perform two-stimulus experiments, informed by model predictions, to reveal fundamental computational processes. We quantitatively show that coleoptiles respond not only to sums but also to differences between stimuli over different timescales, constituting evidence that plants can compare stimuli-crucial for search and regulation processes. These timescales also coincide with oscillations observed in gravitropic responses of wheat coleoptiles, suggesting shoots may combine memory and movement in order to enhance posture control and sensing capabilities.


Assuntos
Cotilédone , Gravitropismo , Gravitropismo/fisiologia , Modelos Biológicos , Triticum , Movimento
12.
Sci Rep ; 13(1): 11165, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460700

RESUMO

Gravitropism is the plant organ bending in response to gravity, while a straightening mechanism prevents bending beyond the gravitropic set-point angle. The promotion and prevention of bending occur simultaneously around the inflorescence stem tip. How these two opposing forces work together and what part of the stem they affect are unknown. To understand the mechanical forces involved, we rotated wild type and organ-straightening-deficient mutant (myosin xif xik) Arabidopsis plants to a horizontal position to initiate bending. The mutant stems started to bend before the wild-type stems, which led us to hypothesize that the force preventing bending was weaker in mutant. We modeled the wild-type and mutant stems as elastic rods, and evaluated two parameters: an organ-angle-dependent gravitropic-responsive parameter (ß) and an organ-curvature-dependent proprioceptive-responsive parameter (γ). Our model showed that these two parameters were lower in mutant than in wild type, implying that, unexpectedly, both promotion and prevention of bending are weak in mutant. Subsequently, finite element method simulations revealed that the compressive stress in the middle of the stem was significantly lower in wild type than in mutant. The results of this study show that myosin-XIk-and-XIf-dependent organ straightening adjusts the stress distribution to achieve a mechanically favorable shape.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Gravitropismo/fisiologia , Proteínas de Arabidopsis/genética , Gravitação , Miosinas , Mutação
13.
Integr Comp Biol ; 63(6): 1331-1339, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37127409

RESUMO

Pulvini are plant motor organs that fulfill two conflicting mechanical roles. At rest, pulvini function as rigid beams that support the cantilevered weight of leafy appendages. During thigmonastic (touch-induced) or nyctinastic ("sleep"-induced) plant movements, however, pulvini function as flexible joints capable of active bending. I hypothesized that the ability to alternate between these roles emerges from the interaction of two structural features of pulvini: anisotropically reinforced parenchyma cells comprising the body of the pulvinus and a longitudinally stiff but flexurally pliant vascular bundle running through the pulvinus core. To investigate how these two components might interact within biological pulvini, I built a set of pulvinus-inspired physical models with varying combinations of these elements present. I compared the abilities of the models to (1) resist imposed bending deformation (i.e., act as rigid beams) and (2) exhibit bending deformation when asymmetrically pressurized (i.e., act as actively deformable joints). Pulvinus models displayed the greatest ability to resist bending deformation when both an anisotropically reinforced parenchyma and a vasculature-like core were present. Disruption of either element reduced hydrostatic fluid pressures developed within the models, resulting in a decreased ability to resist externally applied forces. When differentially pressurized to induce active bending, the degree of bending achieved varied widely between models with and without adequately reinforced parenchyma elements. Bending, however, was not influenced by the presence of a vasculature-like core. These findings suggest that biological pulvini achieve their dual functionality by pairing anisotropically reinforced parenchyma tissues with a longitudinally stiff but flexurally pliant vascular core. Together, these elements compose a hydrostatic skeleton within the pulvinus that strongly resists external deformation when pressurized, but that bends easily when the balance of fluid pressures within it is altered. These results illustrate the emergent nature of pulvinus motor abilities and highlight structural specialization as an important aspect of pulvinus physiology.


Assuntos
Pulvínulo , Animais , Pulvínulo/fisiologia , Gravitropismo/fisiologia , Folhas de Planta
14.
Sci Rep ; 13(1): 5173, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997582

RESUMO

Herein, we describe a highly potent gravitropic bending inhibitor with no concomitant growth inhibition. Previously, we reported that (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) selectively inhibits root gravitropic bending of lettuce radicles at 5 µM. Based on the structure-activity relationship study of ku-76 as a lead compound, we designed and synthesized various C4-substituted analogs of ku-76. Among the analogs, 4-phenylethynyl analog exhibited the highest potency for gravitropic bending inhibition, which was effective at only 0.01 µM. Remarkably, 4-phenylethynyl analog is much more potent than the known inhibitor, NPA. Substitution in the para position on the aromatic ring of 4-phenylethynyl group was tolerated without diminished activity. In addition, evaluation using Arabidopsis indicated that 4-phenylethynyl analog inhibits gravitropism by affecting auxin distribution in the root tips. Based on the effects on Arabidopsis phenotypes, 4-phenylethynyl analog may be a novel inhibitor that differs in action from the previously reported auxin transport inhibitors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gravitropismo/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relação Estrutura-Atividade , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/metabolismo
15.
Biosystems ; 225: 104847, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758718

RESUMO

Root growth and their interactions can provide valuable information for the development of asynchronous logic systems. Here, maize root behavior due to positive gravitropism and nutritropism is evaluated as three-inputs-three-outputs logical gates. Using plant roots as the element for unconventional computing, the Boolean functions of each root tropism were constructed through arithmetic-logical operations. One gravity gate (rGG) and two nutrient gates (rNG1 and rNG2) were fabricated using additive manufacturing. The rGG platform was oriented with roots directly pulled down by gravity which computes (x, y, z) = (xz + yz, x + y¯z+yz¯, xy + yz), whereas specific output channels in rNG1 and rNG2 were fertigated with high phosphorus concentration resulting in (x, y, z) = (x + y + z, xy + xz, xyz) for rNG1 and (x, y, z) = (xyz, xy¯z+xyz¯, x + y + z) for rNG2. For rGG, rNG1, and rNG2, the symbols x, y, and z pertain to "root presence" in the related channel, whereas top bar on the symbols indicates "root absence". Anatomical traits of roots were evaluated to assess possible differences in vascular tissues due to gravitropic and nutritropic responses. Overall, maize primary roots showed prominent positive gravitropism and nutritropism, and the roots that were most attracted by gravitational or nutritional stimuli showed an increase in the diameter of phloem and xylem. The logic exhibited by roots was dependent on the gravitropic and nutritropic stimuli to which they were exposed in the different logic gates. The responsiveness of maize roots to environmental stimuli such as gravity and nutrients provided valuable information to be used in computational bioelectronics.


Assuntos
Gravitropismo , Zea mays , Gravitropismo/fisiologia , Raízes de Plantas
16.
Plant Physiol ; 192(1): 256-273, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747317

RESUMO

Throughout the exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these 2 processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane (PM). Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the PM to temporarily support auxin transport up to the elongation zone, thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gravitropismo/fisiologia , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
17.
J Plant Res ; 136(2): 265-276, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680680

RESUMO

Plants' ability to sense and respond to gravity is a unique and fundamental process. When a plant organ is tilted, it adjusts its growth orientation relative to gravity direction, which is achieved by a curvature of the organ. In higher, multicellular plants, it is thought that the relative directional change of gravity is detected by starch-filled organelles that occur inside specialized cells called statocytes, and this is followed by signal conversion from physical information to physiological information within the statocytes. The classic starch statolith hypothesis, i.e., the starch accumulating amyloplasts movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Acharya Jagadish Chandra Bose through his pioneering research had investigated whether the fundamental reaction of geocurvature is contractile or expansive and whether the geo-sensing cells are diffusedly distributed in the organ or are present in the form of a definite layer. In this backdrop, a microscopy based experimental study was undertaken to understand the distribution pattern of the gravisensing layer, along the length (node-node) of the model plant Alternanthera philoxeroides and to study the microrheological property of the mobile starch-filled statocytes following inclination-induced graviception in the stem of the model plant. The study indicated a prominent difference in the pattern of distribution of the gravisensing layer along the length of the model plant. The study also indicated that upon changing the orientation of the plant from vertical position to horizontal position there was a characteristic change in orientation of the mobile starch granules within the statocytes. In the present study for the analysis of the microscopic images of the stem tissue cross sections, a specialized and modified microscopic illumination setup was developed in the laboratory in order to enhance the resolution and contrast of the starch granules.


Assuntos
Microscopia , Amido , Sensação Gravitacional/fisiologia , Gravitação , Plastídeos/ultraestrutura , Gravitropismo/fisiologia
18.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675054

RESUMO

Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/genética , Gravitropismo/fisiologia , Plântula/genética , Brachypodium/genética , Meristema , Rotação , Estudo de Associação Genômica Ampla , Raízes de Plantas/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos
19.
New Phytol ; 238(1): 142-154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636793

RESUMO

Root lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively. The Zmyuc4 single mutant and Zmyuc2/4 double mutant exhibit enlarged brace root angle compared with the wild-type plants, with larger brace root angle being observed in the Zmyuc2/4 double mutant. Consistently, the brace root tips of the Zmyuc4 single mutant and Zmyuc2/4 double mutant accumulate less auxin and are defective in proper reallocation of auxin in response to gravi-stimuli. Furthermore, we show that the Zmyuc4 single mutant and the Zmyuc2/4 double mutant display obviously enhanced root lodging resistance. Our combined results demonstrate that ZmYUC2- and ZmYUC4-mediated local auxin biosynthesis is required for normal gravity response of the brace roots and provide effective targets for breeding root lodging resistant maize cultivars.


Assuntos
Gravitropismo , Zea mays , Zea mays/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
20.
Sci Rep ; 12(1): 18256, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309570

RESUMO

Directing plant growth in weightlessness requires understanding the processes that establish plant orientation and how to manipulate them. Both gravi- and phototropism determine directional growth and previous experiments showed that high gradient magnetic fields (HGMF) can induce curvature in roots and shoots. Experiments with Brassica rapa verified that that gravitropism-like induction of curvature is possible in space and that the HGMF-responsive organelles are amyloplasts. We assessed the effect of space and HGMF based on 16 genes and compared their transcription with static growth and clinorotation. Amyloplasts size in root tips increased under weightlessness but decreased under clinorotation but not in response to magnetic fields. Amyloplast size changes were correlated with reduced amylase transcription in space samples and enhanced transcription after clinorotation. Mechanostimulation and weightlessness have opposite effects on the size of amyloplasts. The data show that plants perceive weightlessness, and that their metabolism adjusts to microgravity and mechanostimulation. Thus, clinorotation as surrogate for space research may lead to incorrect interpretations.


Assuntos
Voo Espacial , Ausência de Peso , Gravitropismo/fisiologia , Plastídeos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Rotação , Amido/metabolismo , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA