Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39140692

RESUMO

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Assuntos
Aldeído Liases , Antituberculosos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/metabolismo , Aldeído Liases/química , Células Vero , Estrutura Molecular , Cristalografia por Raios X , Chlorocebus aethiops , Animais , Guanina/farmacologia , Guanina/química , Guanina/análogos & derivados , Guanina/síntese química , Simulação de Acoplamento Molecular , Células Hep G2 , Modelos Moleculares
2.
J Phys Chem B ; 128(32): 7803-7812, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106822

RESUMO

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn (1) or a hooked bdppz (2) benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 yields a dppn-based metal-to-ligand charge-transfer (MLCT) state, which in turn populates a dppn intraligand (3IL) state. In contrast, photoexcitation of 2 results in an MLCT state on the TAP ligand and not the intercalating bdppz ligand. Both 1 and 2 bind strongly to double-stranded guanine-rich DNA with a loss of emission. Combined TrA and time-resolved infrared (TRIR) spectroscopy confirms formation of the guanine radical cation when 2 is bound to the d(G5C5)2 duplex, which is not the case when 1 is bound to the same duplex and indicates a different mechanism of action in DNA. Utilizing the long-lived triplet excited lifetime, we show good uptake and localization of 2 in live cells as well as isolated chromosomes. The observed shortening of the excited-state lifetime of 2 when internalized in cell chromosomes is consistent with DNA binding and luminescent quenching due to guanine photo-oxidation.


Assuntos
DNA , Guanina , Substâncias Intercalantes , Rutênio , DNA/química , DNA/metabolismo , Guanina/química , Rutênio/química , Ligantes , Substâncias Intercalantes/química , Humanos , Isomerismo , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Piridinas/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Estrutura Molecular , Células HeLa
3.
J Am Chem Soc ; 146(32): 22553-22562, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101269

RESUMO

N2-Alkyl-2'-deoxyguanosine (N2-alkyl-dG) is a major type of minor-groove DNA lesions arising from endogenous metabolic processes and exogenous exposure to environmental contaminants. The N2-alkyl-dG lesions, if left unrepaired, can block DNA replication and transcription and induce mutations in these processes. Nevertheless, the repair pathways for N2-alkyl-dG lesions remain incompletely elucidated. By utilizing a photo-cross-linking coupled with mass spectrometry-based quantitative proteomic analysis, we identified a series of candidate N2-alkyl-dG-binding proteins. We found that two of these proteins, i.e., high-mobility group protein B3 (HMGB3) and SUB1, could bind directly to N2-nBu-dG-containing duplex DNA in vitro and promote the repair of this lesion in cultured human cells. In addition, HMGB3 and SUB1 protected cells against benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). SUB1 exhibits preferential binding to both the cis and trans diastereomers of N2-BPDE-dG over unmodified dG. On the other hand, HMGB3 binds favorably to trans-N2-BPDE-dG; the protein, however, does not distinguish cis-N2-BPDE-dG from unmodified dG. Consistently, genetic ablation of HMGB3 conferred diminished repair of trans-N2-BPDE-dG, but not its cis counterpart, whereas loss of SUB1 conferred attenuated repair of both diastereomers. Together, we identified proteins involved in the cellular sensing and repair of minor-groove N2-alkyl-dG lesions and documented a unique role of HMGB3 in the stereospecific recognition and repair of N2-BPDE-dG.


Assuntos
Reparo do DNA , DNA , Proteína HMGB3 , Humanos , DNA/química , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Guanina/química , Guanina/metabolismo , Proteína HMGB3/metabolismo , Proteína HMGB3/química , Ligação Proteica
4.
Phys Rev E ; 109(6-1): 064412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020924

RESUMO

DNA exhibits remarkable charge transfer ability, which is crucial for its biological functions and potential electronic applications. The charge transfer process in DNA is widely recognized as primarily mediated by guanine, while the contribution of other nucleobases is negligible. Using the tight-binding models in conjunction with first-principles calculations, we investigated the charge transfer behavior of homogeneous GC and AT pairs. We found that the charge transfer rate of adenine significantly changes. With overstretching, the charge transfer rate of adenine can even surpass that of guanine, by as much as five orders of magnitude at a twist angle of around 26°. Further analysis reveals that it is attributed to the turnover of the relative coupling strength between homogeneous GC and AT base pairs, which is caused by the symmetry exchange between the two highest occupied molecular orbitals of base pairs occurring at different twist angles. Given the high degree of flexibility of DNA in vivo and in vitro conditions, these findings prompt us to reconsider the mechanism of biological functions concerning the charge transfer in DNA molecules and further open the potential of DNA as a biomaterial for electronic applications.


Assuntos
Adenina , DNA , Conformação de Ácido Nucleico , DNA/química , DNA/metabolismo , Adenina/química , Adenina/metabolismo , Modelos Moleculares , Pareamento de Bases , Guanina/química , Guanina/metabolismo , Transporte de Elétrons
5.
J Hazard Mater ; 477: 135292, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059292

RESUMO

Laccases are the most commonly used agents for the treatment of phenolic pollutants. To address the instability and high cost of natural laccases, we investigated nucleobase-modulated copper nanomaterial with laccase-like activity. Various nucleobases, including adenine, guanine, cytosine, and thymine, were investigated as templates for Cu2+ reduction and copper nanomaterials formation due to their coordination capacity. By comparing structure and catalytic activity, the cytosine-mediated copper nanomaterial (C-Cu) had the best laccase-like activity and other nucleobase-templated copper nanomaterials exhibited low catalytic activity under the same conditions. The mechanism of nucleobase regulation of the catalytic activity of copper nanomaterials was further analyzed using X-ray photoelectron spectroscopy and density functional theory. The possible catalytic mechanisms of C-Cu, including substrate adsorption, substrate oxidation, oxygen binding, and oxygen reduction, were proposed. Remarkably, nucleobase-modulated copper nanozymes showed high stability and catalytic oxidation performance at various pH values, temperatures, long-term storage, and high salinity. In combination with electrochemical techniques, a portable electrochemical sensor for measuring phenolic pollutants was developed. This novel sensor exhibited a good linear response to catechol (10-1000 µM) with a limit of detection of 1.8 µM and excellent selectivity and anti-interference ability. This study provides not only a new strategy for the regulation of the laccase-like activity of copper nanomaterials but also a novel tool for the effective removal and low-cost detection of phenolic pollutants.


Assuntos
Cobre , Lacase , Nanoestruturas , Poluentes Químicos da Água , Cobre/química , Lacase/química , Lacase/metabolismo , Nanoestruturas/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Oxirredução , Fenóis/química , Fenóis/análise , Catálise , Técnicas Eletroquímicas , Citosina/química , Catecóis/química , Adenina/química , Adenina/análise , Guanina/química , Guanina/análise
6.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893576

RESUMO

Rare tautomeric forms of nucleobases can lead to Watson-Crick-like (WC-like) mispairs in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR studies show evidence for the existence of short-time WC-like guanine-thymine (G-T) mispairs; however, the mechanism of proton transfer and the degree to which nuclear quantum effects play a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is required to achieve high precision in the free energy barriers. To address this problem, we develop a QM/MM machine learning potential correction (QM/MM-ΔMLP) that is able to improve the computational efficiency, greatly extend the accessible time scales of the simulations, and enable practical application of path integral molecular dynamics to examine nuclear quantum effects. We find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our results enable a rationalization of observed experimental data and the prediction of populations of rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.


Assuntos
Pareamento de Bases , Guanina , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Timina , Guanina/química , Timina/química , DNA/química , Termodinâmica
7.
Org Biomol Chem ; 22(27): 5629-5635, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38912549

RESUMO

8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.


Assuntos
Guanina , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , RNA/metabolismo , RNA/análise , MicroRNAs/análise , MicroRNAs/metabolismo , DNA Ligases/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real
8.
PLoS One ; 19(6): e0305590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875261

RESUMO

The analysis of nucleic acids is one of the fundamental parts of modern molecular biology and molecular diagnostics. The information collected predominantly depends on the condition of the genetic material. All potential damage induced by oxidative stress may affect the final results of the analysis of genetic material obtained using commonly used techniques such as polymerase chain reaction or sequencing. The aim of this work was to evaluate the effects of high temperature and pH on DNA structure in the context of the occurrence of oxidative damage, using square-wave voltammetry and two independent research protocols. We resulted in visible oxidation damage registered in acidic conditions after the thermal denaturation process (pH 4.7) with changes in the intensity of guanine and adenine signals. However, using phosphate buffer (pH 7.0) for DNA denaturation negatively affected the DNA structure, but without any oxidized derivatives present. This leads to the conclusion that oxidation occurring in the DNA melting process results in the formation of various derivatives of nucleobases, both electrochemically active and inactive. These derivatives may distort the results of molecular tests due to the possibility of forming complementary bonds with various nucleobases. For example, 8-oxoguanine can form pairs with both cytosine and adenine.


Assuntos
DNA , Desnaturação de Ácido Nucleico , Estresse Oxidativo , Temperatura , DNA/química , DNA/metabolismo , Oxirredução , Dano ao DNA , Concentração de Íons de Hidrogênio , Guanina/química , Guanina/análogos & derivados , Guanina/metabolismo , Técnicas Eletroquímicas/métodos , Adenina/química
9.
Anal Methods ; 16(27): 4607-4618, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920251

RESUMO

Pteridines are important low molecular weight biomarkers used in the diagnostics of inflammation, oxidative stress, phenylketonuria, cancer, etc. In this experimental study, we present a simple and selective approach to determine pteridines (pterin, leucopterin and folic acid) and nucleobase guanine concentration using luminescent gold clusters stabilized by aromatic amino acids. We synthesized several new gold clusters (AA-Au NCs) stabilized by various aromatic amino acids - 3,4-dihydroxy-L-phenylalanine (DOPA), L-tryptophan (Trp), L-tyrosine (Tyr) and L-phenylalanine (Phe), emitting in the violet-green spectral range. Their luminescence appeared to be sensitive to the presence of pterin, leucopterin, folic acid and guanine depending on the stabilizing matrix. Thus, a facile and cost-effective approach for the detection of pteridines is proposed. AA-Au NC-based sensors work according to "turn-off" and "turn-on" mechanisms. The possible physical origins of their luminescence quenching and enhancement are discussed.


Assuntos
Ouro , Pterinas , Pterinas/química , Ouro/química , Medições Luminescentes/métodos , Guanina/química , Luminescência , Aminoácidos/química , Pteridinas/química , Nanopartículas Metálicas/química
10.
Chemphyschem ; 25(9): e202400391, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38712664

RESUMO

The front cover artwork is provided by Prof. Papadantonakis' group. The image shows a Watson-Crick Guanine-Cytosine pair, and the difference between vertical and adiabatic ionization potentials. Read the full text of the Research Article at 10.1002/cphc.202300946.


Assuntos
Pareamento de Bases , Citosina , Guanina , Citosina/química , Guanina/química , DNA/química
11.
Org Lett ; 26(22): 4818-4823, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38809781

RESUMO

We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation. By strategically integrating these three catalytic protocols, we established a practical pathway for acquiring valuable densely heteroatom-substituted cyclopentene cores.


Assuntos
Antivirais , Ciclopentanos , Guanina , Vírus da Hepatite B , Ciclopentanos/química , Ciclopentanos/síntese química , Catálise , Antivirais/química , Antivirais/síntese química , Estereoisomerismo , Estrutura Molecular , Guanina/química , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Ciclização , Paládio/química
12.
Sci Rep ; 14(1): 10826, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734799

RESUMO

Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.


Assuntos
DNA , Guanina , Nanotubos de Carbono , Nanotubos de Carbono/química , DNA/química , Guanina/química , Teoria da Densidade Funcional , Adenina/química , Citosina/química , Timina/química , Análise de Sequência de DNA/métodos , Elétrons , Modelos Moleculares , Humanos
13.
RNA ; 30(7): 901-919, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38670632

RESUMO

A key to understanding the roles of RNA in regulating gene expression is knowing their structures in vivo. One way to obtain this information is through probing the structures of RNA with chemicals. To probe RNA structure directly in cells, membrane-permeable reagents that modify the Watson-Crick (WC) face of unpaired nucleotides can be used. Although dimethyl sulfate (DMS) has led to substantial insight into RNA structure, it has limited nucleotide specificity in vivo, with WC face reactivity only at adenine (A) and cytosine (C) at neutral pH. The reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was recently shown to modify the WC face of guanine (G) and uracil (U). Although useful at lower concentrations in experiments that measure chemical modifications by reverse transcription (RT) stops, at higher concentrations necessary for detection by mutational profiling (MaP), EDC treatment leads to degradation of RNA. Here, we demonstrate EDC-stimulated degradation of RNA in Gram-negative and Gram-positive bacteria. In an attempt to overcome these limitations, we developed a new carbodiimide reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide (ETC), which we show specifically modifies unpaired Gs and Us in vivo without substantial degradation of RNA. We establish ETC as a probe for MaP and optimize the RT conditions and computational analysis in Escherichia coli Importantly, we demonstrate the utility of ETC as a probe for improving RNA structure prediction both alone and with DMS.


Assuntos
Guanina , Conformação de Ácido Nucleico , Ésteres do Ácido Sulfúrico , Uracila , Ésteres do Ácido Sulfúrico/química , Uracila/química , Uracila/análogos & derivados , Uracila/metabolismo , Guanina/química , Guanina/metabolismo , RNA/química , RNA/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Carbodi-Imidas/química , RNA Bacteriano/química , RNA Bacteriano/genética , Estabilidade de RNA , Indicadores e Reagentes/química
14.
J Phys Chem B ; 128(17): 4087-4096, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38644782

RESUMO

Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter their propensities to form low-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn·Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly populated (pop. ∼ 5%) and short-lived (lifetime ∼50 ms) nonmutagenic 8OGanti·Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on the labeled partner adenine. The Watson-Crick-like 8OGsyn·Aanti mismatch also rescued the kinetics of Hoogsteen motions at distant A-T base pairs, which the G·A mismatch had slowed down. The results lend further support for 8OGanti·Aanti as a minor conformational state of 8OG·A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.


Assuntos
Guanina , Guanina/análogos & derivados , Guanina/química , Dano ao DNA , DNA/química , Conformação de Ácido Nucleico , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética
15.
Bioelectrochemistry ; 158: 108714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38653106

RESUMO

G-quadruplex (G4) DNA is present in human telomere oligonucleotide sequences. Oxidative damage to telomeric DNA accelerates telomere shortening, which is strongly associated with aging and cancer. Most of the current analyses on oxidative DNA damage are based on ds-DNA. Here, we developed a electrochemiluminescence (ECL) probe for enhanced recognition of oxidative damage in G4-DNA based on DNA-mediated charge transfer (CT), which could specifically recognize damaged sites depending on the position of 8-oxoguanine (8-oxoG). First, a uniform G4-DNA monolayer interface was fabricated; the G4-DNA mediated CT properties were examined using an iridium(III) complex [Ir(ppy)2(pip)]PF6 stacked with G4-DNA as an indicator. The results showed that G4-DNA with 8-oxoG attenuated DNA CT. The topological effects of oxidative damage at different sites of G4-DNA and their effects on DNA CT were revealed. The sensing platform was also used for the sensitive and quantitative detection of 8-oxoG in G4-DNA, with a detection limit of 28.9 fmol. Overall, these findings present a sensitive platform to study G4-DNA structural and stability changes caused by oxidative damage as well as the specific and quantitative detection of oxidation sites. The different damage sites in the G-quadruplex could provide detailed clues for understanding the function of G4-associated telomere functional enzymes.


Assuntos
Dano ao DNA , DNA , Quadruplex G , Guanina , DNA/química , Guanina/análogos & derivados , Guanina/química , Humanos , Oxirredução , Estresse Oxidativo , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
16.
Nucleic Acids Res ; 52(7): 3522-3546, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38512075

RESUMO

G-quadruplexes (G4) are helical structures found in guanine-rich DNA or RNA sequences. Generally, their formalism is based on a few dozen structures, which can produce some inconsistencies or incompleteness. Using the website ASC-G4, we analyzed the structures of 333 intramolecular G4s, of all types, which allowed us to clarify some key concepts and present new information. To each of the eight distinguishable topologies corresponds a groove-width signature and a predominant glycosidic configuration (gc) pattern governed by the directions of the strands. The relative orientations of the stacking guanines within the strands, which we quantified and related to their vertical gc successions, determine the twist and tilt of the helices. The latter impact the minimum groove widths, which represent the space available for lateral ligand binding. The G4 four helices have similar twists, even when these twists are irregular, meaning that they have various angles along the strands. Despite its importance, the vertical gc succession has no strict one-to-one relationship with the topology, which explains the discrepancy between some topologies and their corresponding circular dichroism spectra. This study allowed us to introduce the new concept of platypus G4s, which are structures with properties corresponding to several topologies.


Assuntos
DNA , Quadruplex G , DNA/química , Guanina/química , Modelos Moleculares , Dicroísmo Circular , Conformação de Ácido Nucleico , RNA/química
17.
Methods Enzymol ; 695: 255-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521588

RESUMO

RNAs often accomplish their diverse functions through direct interactions with RNA-binding proteins (RBPs) in a sequence- and/or structure-dependent manner. RNA G-quadruplexes (rG4s) are unique secondary structures formed by guanine-rich RNA sequences which impact RNA function independently and in combination with RBPs. Efforts from several labs have identified dozens of rG4 specific RBPs (rG4BPs), although the research is still in the growing phase. Here we present methods for the systematic identification of rG4BPs using a pull-down approach that takes advantage of the chemical modification of guanine bases. This allows abolishing the rG4 structures while still maintaining the base composition intact, and hence helps in recognizing true rG4BPS (in contrast to G-rich motif binders). In combination with other biochemical assays, such an approach can be efficiently used for the identification and characterization of bona fide rG4BPs.


Assuntos
Quadruplex G , RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Guanina/química
18.
Chemistry ; 30(29): e202400722, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38497675

RESUMO

A guanine-rich oligonucleotide based on a human telomeric sequence but with the first three-nucleotide intervening stretch replaced by a putative 15-nucleotide hairpin-forming sequence shows a pH-dependent folding into different quadruplex-duplex hybrids in a potassium containing buffer. At slightly acidic pH, the quadruplex domain adopts a chair-type conformation. Upon increasing the pH, a transition with a midpoint close to neutral pH to a major and minor (3+1) hybrid topology with either a coaxially stacked or orthogonally oriented duplex stem-loop occurs. NMR-derived high-resolution structures reveal that an adenine protonation is prerequisite for the formation of a non-canonical base quartet, capping the outer G-tetrad at the quadruplex-duplex interface and stabilizing the antiparallel chair conformation in an acidic environment. Being directly associated with interactions at the quadruplex-duplex interface, this unique pH-dependent topological transition is fully reversible. Coupled with a conformation-sensitive optical readout demonstrated as a proof of concept using the fluorescent dye thiazole orange, the present quadruplex-duplex hybrid architecture represents a potentially valuable pH-sensing system responsive in a physiological pH range of 7±1.


Assuntos
Quadruplex G , Concentração de Íons de Hidrogênio , Humanos , Benzotiazóis/química , DNA/química , Oligonucleotídeos/química , Quinolinas/química , Conformação de Ácido Nucleico , Corantes Fluorescentes/química , Telômero/química , Guanina/química , Espectroscopia de Ressonância Magnética
19.
Biochimie ; 222: 101-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38447859

RESUMO

Understanding the diversity of DNA structure and functions in biology requires tools to study this biomolecule selectively and thoroughly. Fluorescence methods are powerful technique for non-invasive research. Due to the low quantum yield, the intrinsic fluorescence of nucleotides has not been considered for use in the detection and differentiation of nucleic acid bases. Here, we have studied the influence of protonation of nucleotides on their fluorescence properties. We show that protonation of ATP and GTP leads to enhanced intrinsic fluorescence. Fluorescence enhancement at acidic pH has been observed for double-stranded DNA and single-stranded oligonucleotides. The formation of G4 secondary structures apparently protected certain nucleotides from protonation, resulting in less pronounced fluorescence enhancement. Furthermore, acid-induced depurination under protonation was less noticeable in G4 structures than in double-stranded and single-stranded DNA. We show that changes in the intrinsic fluorescence of guanine can be used as a sensitive sensor for changes in the structure of the DNA and for the protonation of specific nucleotides.


Assuntos
DNA , Guanina , Guanosina Trifosfato , Prótons , Guanina/química , DNA/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Fluorescência , Espectrometria de Fluorescência/métodos , DNA de Cadeia Simples/química , Trifosfato de Adenosina/química , Conformação de Ácido Nucleico , Quadruplex G
20.
Nucleic Acids Res ; 52(6): 3390-3405, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38381082

RESUMO

Tandem-repetitive DNA (where two or more DNA bases are repeated numerous times) can adopt non-canonical secondary structures. Many of these structures are implicated in important biological processes. Human Satellite III (HSat3) is enriched for tandem repeats of the sequence ATGGA and is located in pericentromeric heterochromatin in many human chromosomes. Here, we investigate the secondary structure of the four-repeat HSat3 sequence 5'-ATGGA ATGGA ATGGA ATGGA-3' using X-ray crystallography, NMR, and biophysical methods. Circular dichroism spectroscopy, thermal stability, native PAGE, and analytical ultracentrifugation indicate that this sequence folds into a monomolecular hairpin with non-canonical base pairing and B-DNA characteristics at concentrations below 0.9 mM. NMR studies at 0.05-0.5 mM indicate that the hairpin is likely folded-over into a compact structure with high dynamics. Crystallographic studies at 2.5 mM reveal an antiparallel self-complementary duplex with the same base pairing as in the hairpin, extended into an infinite polymer. The non-canonical base pairing includes a G-G intercalation sandwiched by sheared A-G base pairs, leading to a cross-strand four guanine stack, so called guanine zipper. The guanine zippers are spaced throughout the structure by A-T/T-A base pairs. Our findings lend further insight into recurring structural motifs associated with the HSat3 and their potential biological functions.


Assuntos
DNA , Sequências Repetitivas de Ácido Nucleico , Humanos , Sequência de Bases , DNA/genética , DNA/química , Guanina/química , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA