Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(7): 3411-3419, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470815

RESUMO

Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.


Assuntos
Lesão Pulmonar , NF-kappa B , Bifenil Polibromatos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polifenóis/farmacologia , Chá , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
2.
Nature ; 629(8014): 1182-1191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480881

RESUMO

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Receptores Adrenérgicos beta 2 , Humanos , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/ultraestrutura , Fatores de Tempo , Ativação Enzimática/efeitos dos fármacos , Domínios Proteicos , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos
3.
J Ethnopharmacol ; 323: 117616, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38142877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rice (Oryza sativa L.), a staple food for a significant portion of the global population, has been recognized for its traditional medicinal properties for centuries. Rice bran, a by-product of rice milling, contains many bioactive compounds with potential pharmaceutical and therapeutic benefits. In recent years, research has highlighted the anti-inflammatory potential of rice bran, contributed by the bioactive components concentrated in their bran but, unfortunately, entrapped in the bran matrix, with limited bioavailability. Previous studies have reported that the enzymatic treatment of rice bran improves the bran's bioactive compound profile but did not investigate its impact on chronic conditions such as inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory effects of endo-1,4-ß-xylanase (ERB) and Viscozyme (VRB) treated red rice bran extracts against lipopolysaccharide-induced inflammation in RAW264.7 macrophages in comparison with non-enzyme-treated bran (CRB). Further established their efficacy with known anti-inflammatory compounds-ferulic acid (FA), catechin (CAT), γ-tocopherol (GTP), and γ-oryzanol (ORZ). MATERIALS AND METHODS: The RAW 264.7 macrophage cells were pre-treated with non-toxic concentrations (10-200 µg/mL) of FA, CAT, GTP, ORZ, CRB, ERB, and VRB, followed by inflammatory stimulation with LPS for 24 h. Further, the cell supernatant and pellets were harvested to study the anti-inflammatory effects by evaluating and measuring their efficacy in inhibiting pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IL-1ß) and mediators (ROS, NO, PGE2, COX2, iNOS) through biochemical, ELISA, and mRNA expression studies. RESULTS: The findings showed that both ERB and VRB effectively inhibited the production of pro-inflammatory markers (TNF-α, IL-6) and mediators (ROS, NO, PGE2) by downregulating mRNA expressions of inflammatory genes (TNF-α, IL-1ß, IL-6, IL-10, COX2, iNOS) and demonstrated anti-inflammatory efficacy higher than CRB. On comparison, ERB demonstrated exceptional efficacy by causing a reduction of 48% in ROS, 20% in TNF-α, and 23% in PGE2 at 10 µg/mL, surpassing the anti-inflammatory capabilities of all the bioactive compounds, FA and ORZ, respectively. At the same time, VRB exhibited remarkable efficacy by reducing NO production by 52% at 200 µg/mL and IL-6 by 66% at 10 µg/mL, surpassing FA, CAT, ORZ, and GTP. Further, ERB downregulated the mRNA expression of IL-10 and iNOS, while VRB downregulated TNF-α, IL-1ß, and COX2 expression. Both extracts equally downregulated IL-6 expression at 10 µg/mL, demonstrating the efficacy more remarkable/on par with established anti-inflammatory compounds. CONCLUSIONS: Overall, enzyme-treated rice bran/extract, particularly ERB, possesses excellent anti-inflammatory properties, making them promising agents for alternatives to contemporary nutraceuticals/functional food against inflammatory diseases.


Assuntos
Catequina , Ácidos Cumáricos , Oryza , Fenilpropionatos , Oryza/química , gama-Tocoferol/metabolismo , gama-Tocoferol/farmacologia , gama-Tocoferol/uso terapêutico , Interleucina-10/metabolismo , Catequina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Dinoprostona/metabolismo , Ciclo-Oxigenase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos , RNA Mensageiro/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Guanosina Trifosfato/uso terapêutico , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA