RESUMO
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Assuntos
Halobacteriaceae , Halorrodopsinas , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Ressonância Magnética Nuclear Biomolecular , Cloretos/química , Cloretos/metabolismo , Luz , Conformação Proteica , Processos Fotoquímicos , Espectroscopia de Ressonância Magnética , Modelos MolecularesRESUMO
Sensory rhodopsin II (SRII) is a prototype photosensor that binds the retinal Schiff base chromophore. Upon photoabsorption, SRII is transformed into the signaling state, where two long-lived photointermediates are known to contribute. One is the M intermediate containing the deprotonated 13-cis chromophore, and the other is the O intermediate that is believed to have the protonated all-trans chromophore. The chromophore in the O intermediate is also thought to have the atypical 15-syn (CâN cis) configuration about the Schiff base moiety. In this communication, we study SRII from Natronomonas pharaonis (NpSRII) using Raman spectroscopy and find that the retinal chromophore configuration in the O intermediate is the 13-cis, 15-anti (CâN trans), contrary to the conventional notion. This result points out the revision of the chromophore structural changes underlying the long-lived signaling state of SRII.
Assuntos
Halobacteriaceae , Retinaldeído , Bases de Schiff , Rodopsinas Sensoriais , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Rodopsinas Sensoriais/genética , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff/química , Análise Espectral RamanRESUMO
Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif. The ion-transport assay revealed that they function as light-driven inward anion pumps similar to halorhodopsins previously found in archaea and bacteria. Based on the characteristic glycine residue in their motif and light-driven anion-pumping function, these new rhodopsins are called glycylhalorhodopsins (GHRs). X-ray crystallographic analysis found large cavities on the cytoplasmic side, which are produced by the small side-chain volume of the glycine residue in the motif. The opened structure of GHR on the cytoplasmic side is related to the anion releasing process to the cytoplasm during the photoreaction compared to canonical halorhodopsin from Natronomonas pharaonis (NpHR). GHR also transports SO42- and the extracellular glutamate residue plays an essential role in extracellular SO42- uptake. In summary, we have identified TTG motif-containing microbial rhodopsins that display an anion-releasing mechanism.
Assuntos
Ânions , Luz , Ânions/metabolismo , Ânions/química , Citoplasma/metabolismo , Cristalografia por Raios X , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Transporte de Íons , Motivos de Aminoácidos , Halobacteriaceae/metabolismo , Halobacteriaceae/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genéticaRESUMO
Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.
Assuntos
Cloretos , Halobacteriaceae , Halorrodopsinas , Halorrodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/genética , Cloretos/metabolismo , Cloretos/química , Halobacteriaceae/metabolismo , Halobacteriaceae/química , Halobacteriaceae/genética , Sítios de Ligação , Transporte de Íons , Transporte BiológicoRESUMO
The ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump NmHR from the marine bacterium Nonlabens marinus, located in the membrane of living Escherichia coli cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds. Transient structural changes of the retinal cofactor and the surrounding apoprotein are recorded using light-induced time-resolved UV/vis and IR difference spectroscopy. Of particular note, we have resolved the kinetics of the transient deprotonation of a single cysteine residue during the photocycle of NmHR out of the manifold of molecular vibrations of the cells. These findings are of high general relevance, given the successful development of optogenetic tools from photoreceptors to interfere with enzymatic and neuronal pathways in living organisms using light pulses as a noninvasive trigger.
Assuntos
Escherichia coli , Halorrodopsinas , Escherichia coli/química , Escherichia coli/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Espectrofotometria Infravermelho/métodos , Luz , Halobacteriaceae/química , Halobacteriaceae/metabolismo , CinéticaRESUMO
The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.
Assuntos
Haloarcula/metabolismo , Halobacteriaceae/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Resíduos Sólidos , Ácido 3-Hidroxibutírico/metabolismo , Animais , Bombyx/química , Bombyx/metabolismo , Carbono/metabolismo , Meios de Cultura , Glucose/metabolismo , Haloarcula/química , Halobacteriaceae/química , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Cloreto de Sódio/químicaRESUMO
Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.
Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halobacteriaceae/química , Rodopsinas Sensoriais/química , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields. Therefore, controlling the protein-splicing activity of inteins has become critical. Here we utilized conditional protein splicing by salt conditions. We developed the inducible intein-mediated self-cleaving tag (IIST) system based on salt-inducible protein splicing of the MCM2 intein from the extremely halophilic archaeon, Halorhabdus utahensis and applied it to small peptides. Moreover, we described a method for the amidation using the same IIST system and demonstrated 15N-labeling of the C-terminal amide group of a single domain antibody (VHH).
Assuntos
Amidas/química , Proteínas de Fluorescência Verde/isolamento & purificação , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Fragmentos de Peptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Cromatografia de Afinidade , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Inteínas , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de SequênciaRESUMO
We report a simple and direct fluorimetric vesicle-based method for measuring the transport rate of the light-driven ions pumps as specifically applied to the chloride pump, halorhodopsin, from Natronomonas pharaonis (pHR). Previous measurements were cell-based and methods to determine average single channel permeability challenging. We used a water-in-oil emulsion method for directional pHR reconstitution into two different types of vesicles: lipid vesicles and asymmetric lipid-block copolymer vesicles. We then used stopped-flow experiments combined with fluorescence correlation spectroscopy to determine per protein Cl- transport rates. We obtained a Cl- transport rate of 442 (±17.7) Cl-/protein/s in egg phosphatidyl choline (PC) lipid vesicles and 413 (±26) Cl-/protein/s in hybrid block copolymer/lipid (BCP/PC) vesicles with polybutadine-polyethylene oxide (PB12PEO8) on the outer leaflet and PC in the inner leaflet at a photon flux of 1450 photons/protein/s. Normalizing to a per photon basis, this corresponds to 0.30 (±0.07) Cl-/photon and 0.28 (±0.04) Cl-/photon for pure PC and BCP/PC hybrid vesicles respectively, both of which are in agreement with recently reported turnover of ~500 Cl-/protein/s from flash photolysis experiments and with voltage-clamp measurements of 0.35 (±0.16) Cl-/photon in pHR-expressing oocytes as well as with a pHR quantum efficiency of ~30%.
Assuntos
Cloretos/metabolismo , Halorrodopsinas/química , Transporte de Íons/genética , Lipossomos/química , Cloretos/química , Cloretos/efeitos da radiação , Halobacteriaceae/química , Halobacteriaceae/genética , Halorrodopsinas/genética , Cinética , Luz , Lipossomos/metabolismo , Lipossomos/efeitos da radiaçãoRESUMO
Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein-protein interaction and oligomerization in a constraining environment.
Assuntos
Halorrodopsinas/química , Bicamadas Lipídicas/química , Rodopsinas Sensoriais/química , Alcenos/química , Fenômenos Biofísicos , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica , Halobacteriaceae/química , Halobacteriaceae/efeitos da radiação , Halorrodopsinas/efeitos da radiação , Maleatos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Processos Fotoquímicos , Rodopsinas Sensoriais/efeitos da radiação , Marcadores de SpinRESUMO
In hypersaline environments, halophilic archaea synthesize antimicrobial substances called halocins. There is a promise to make new drugs for antibiotic-resistant strains. Here, we report the antibacterial activity of a new haloarchaea selected from Lut Desert, Iran. A total of 38 isolated halophilic bacteria and archaea were screened for the antagonistic activity test of each strain against other bacterial and archaeal strains. Finally, a strain, recognized as Halarchaeum acidiphilum, with a fast grown strain and high antagonistic potential against different strains was identified by morphological, physiological, and molecular characteristics. The halocin was produced in a semisolid submerge medium and partially purified by heat treatments and molecular weight ultrafiltration cutoff (3, 50, and 10 kDa). It was a cell-free, heat-resistant (85°C for 2 h) protein with a molecular mass near to 20 kDa produced at the endpoint of logarithmic growth. The molecular weight of halocin was 17 kDa, and indicated no apparent homology with known halocins, suggesting that this might be a new halocin. Therefore, a new strain belonging to Halarchaeum genus was isolated and characterized here that produced an antimicrobial and anti-haloarchaea halocin.
Assuntos
Anti-Infecciosos/farmacologia , Extremófilos/química , Halobacteriaceae/química , Peptídeos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/metabolismo , Antibiose , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas Arqueais/farmacologia , Extremófilos/classificação , Extremófilos/fisiologia , Halobacteriaceae/classificação , Halobacteriaceae/fisiologia , Concentração de Íons de Hidrogênio , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Filogenia , Cloreto de Sódio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , TemperaturaRESUMO
Halophiles are the organisms that thrive in extreme high salt environments. Despite the extensive studies on their biotechnological potentials, the ability of halophilic prokaryotes for the synthesis of nanoparticles has remained understudied. In this study, the archaeal and bacterial halophiles from a solar saltern were investigated for the intracellular/extracellular synthesis of silver and selenium nanoparticles. Silver nanoparticles were produced by the archaeal Haloferax sp. (AgNP-A, intracellular) and the bacterial Halomonas sp. (AgNP-B, extracellular), while the intracellular selenium nanoparticles were produced by the archaeal Halogeometricum sp. (SeNP-A) and the bacterial Bacillus sp. (SeNP-B). The nanoparticles were characterized by various techniques including UV-Vis spectroscopy, XRD, DLS, ICP-OES, Zeta potentials, FTIR, EDX, SEM, and TEM. The average particle size of AgNP-A and AgNP-B was 26.34 nm and 22 nm based on TEM analysis. Also, the characteristic Bragg peaks of face-centered cubic with crystallite domain sizes of 13.01 nm and 6.13 nm were observed in XRD analysis, respectively. Crystallographic characterization of SeNP-A and SeNP-B strains showed a hexagonal crystallite structure with domain sizes of 30.63 nm and 29.48 nm and average sizes of 111.6 nm and 141.6 nm according to TEM analysis, respectively. The polydispersity index of AgNP-A, AgNP-B, SeNP-A, and SeNP-B was determined as 0.26, 0.28, 0.27, and 0.36 and revealed high uniformity of the nanoparticles. All of the synthesized nanoparticles were stable and their zeta potentials were calculated as (mV): -33.12, -35.9, -31.2, and -29.34 for AgNP-A, AgNP-B, SeNP-A, and SeNP-B, respectively. The nanoparticles showed the antibacterial activity against various bacterial pathogens. The results of this study suggested that the (extremely) halophilic prokaryotes have great potentials for the green synthesis of nanoparticles.
Assuntos
Antibacterianos/química , Extremófilos/química , Nanopartículas Metálicas/química , Células Procarióticas/química , Antibacterianos/farmacologia , Bacillus/química , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Halobacteriaceae/química , Humanos , Nanopartículas Metálicas/administração & dosagem , Tamanho da Partícula , Selênio/química , Prata/químicaRESUMO
The halophilic archaeal strain ZS-3T (= CGMCC 1.12866T = JCM 30239T) was isolated from a sediment sample of Zhoushan marine solar saltern, P. R. China. Phylogenetic analyses based on 16S rRNA, rpoB' genes and the concatenation of 738 protein sequences reveal that strain ZS-3T was related to members of the genus Halorussus. The OrthoANI and in silico DDH values between strain ZS-3T and the current Halorussus members are much lower than the threshold values proposed as the species boundary (ANI 95-96% and in silico DDH 70%), suggesting that strain ZS-3T represents a novel species of Halorussus (Halorussus halophilus sp. nov.). Diverse phenotypic characteristics differentiate strain ZS-3T from current Halorussus members. Since the strain expressed diverse hydrolyzing enzyme activity, its complete genome was sequenced. The genome of strain ZS-3T was found to be 4,450,731 bp with total GC content of 61.51%, and comprises one chromosome and three plasmids. A total of 4694 protein coding genes, 43 tRNA genes and 6 rRNA genes were predicted. A CRISPR-Cas system was also detected. The genome encodes sixteen putative glycoside hydrolases, nine extracellular proteases, seventeen aminopeptidases, seven carboxypeptidases, one esterase and one nitrite reductase. The exploration of the hydrolase genes may expand our understanding of adapted mechanism of halophilic archaea surviving optimally in hypersaline environments where containing organic matter. Meanwhile, various hydrolyzing enzymes may extend this microorganism for further applications in salt-based fermentation.
Assuntos
Halobacteriaceae , Composição de Bases , China , DNA Arqueal/genética , Genoma Arqueal/genética , Sedimentos Geológicos/microbiologia , Halobacteriaceae/química , Halobacteriaceae/classificação , Halobacteriaceae/genética , RNA Ribossômico 16S/genéticaRESUMO
The large use of conventional plastics has resulted in serious environmental problems. Polyhydroxyalkanoates represent a potent replacement to synthetic plastics because of their biodegradable nature. This study aimed to screen bacteria and archaea isolated from an extreme environment, the salt lake Chott El Jerid for the accumulation of these inclusions. Among them, two archaeal strains showed positive results with phenotypic and genotypic methods. Phylogenetic analysis, based on the 16S rRNA gene, indicated that polyhydroxyalkanoate (PHA)-producing archaeal isolates CEJGTEA101 and CEJEA36 were related to Natrinema altunense and Haloterrigena jeotgali, respectively. Gas chromatography and UV-visible spectrophotometric analyses revealed that the PHA were identified as polyhydroxybutyrate and polyhydroxyvalerate, respectively. According to gas chromatography analysis, the strain CEJGTEA101 produced maximum yield of 7 wt % at 37 °C; pH 6.5; 20% NaCl and the strain CEJEA36 produced 3.6 wt % at 37 °C; pH 7; 25% NaCl in a medium supplemented with 2% glucose. Under nutritionally optimal cultivation conditions, polymers were extracted from these strains and were determined by gravimetric analysis yielding PHA production of 35% and 25% of cell dry weight. In conclusion, optimization of PHA production from inexpensive industrial wastes and carbon sources has considerable interest for reducing costs and obtaining high yield.
Assuntos
Halobacteriaceae/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Carbono/metabolismo , Halobacteriaceae/química , Halobacteriaceae/genética , Filogenia , Poli-Hidroxialcanoatos/análise , Poli-Hidroxialcanoatos/genética , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: Optogenetic silencing techniques have expanded the causal understanding of the functions of diverse neuronal cell types in both the healthy and diseased brain. A widely used inhibitory optogenetic actuator is eNpHR3.0, an improved version of the light-driven chloride pump halorhodopsin derived from Natronomonas pharaonis. A major drawback of eNpHR3.0 is related to its pronounced inactivation on a time-scale of seconds, which renders it unsuited for applications that require long-lasting silencing. RESULTS: Using transgenic mice and Xenopus laevis oocytes expressing an eNpHR3.0-EYFP fusion protein, we here report optimized photo-stimulation techniques that profoundly increase the stability of eNpHR3.0-mediated currents during long-term photo-stimulation. We demonstrate that optimized photo-stimulation enables prolonged hyperpolarization and suppression of action potential discharge on a time-scale of minutes. CONCLUSIONS: Collectively, our findings extend the utility of eNpHR3.0 to the long-lasting inhibition of excitable cells, thus facilitating the optogenetic dissection of neural circuits.
Assuntos
Potenciais de Ação/fisiologia , Proteínas de Bactérias/fisiologia , Halorrodopsinas/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Feminino , Halobacteriaceae/química , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/fisiologia , Xenopus laevisRESUMO
From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at â¼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.
Assuntos
Halobacteriaceae/química , Halorrodopsinas/química , Halorrodopsinas/efeitos da radiação , Domínio Catalítico/efeitos da radiação , Temperatura Baixa , Ligação de Hidrogênio , Luz , Conformação Molecular , Retinaldeído/química , Bases de Schiff/química , Análise Espectral RamanRESUMO
Sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis, is a novel model system for membrane protein folding studies. Recently, the SDS-denatured states and the kinetics for reversible unfolding of pSRII have been investigated, opening the door to the first detailed characterisation of denatured states of a membrane protein by solution-state nuclear magnetic resonance (NMR) using uniformly 15N-labelled pSRII. SDS denaturation and acid denaturation of pSRII both lead to fraying of helix ends but otherwise small structural changes in the transmembrane domain, consistent with little changes in secondary structure and disruption of the retinal-binding pocket and tertiary structure. Widespread changes in the backbone amide dynamics are detected in the form of line broadening, indicative of µs-to-ms timescale conformational exchange in the transmembrane region. Detailed analysis of chemical shift and intensity changes lead to high-resolution molecular insights on structural and dynamics changes in SDS- and acid-denatured pSRII, thus highlighting differences in the unfolding pathways under the two different denaturing conditions. These results will form the foundation for furthering our understanding on the folding and unfolding pathways of retinal-binding proteins and membrane proteins in general, and also for investigating the importance of ligand-binding in the folding pathways of other ligand-binding membrane proteins, such as GPCRs.
Assuntos
Halobacteriaceae/metabolismo , Rodopsinas Sensoriais/química , Dodecilsulfato de Sódio/farmacologia , Halobacteriaceae/química , Halobacteriaceae/efeitos dos fármacos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Rodopsinas Sensoriais/efeitos dos fármacosRESUMO
Dense communities of carotenoid-rich members of the Halobacteria (Euryarchaeota), the bacterium Salinibacter (Bacteroidetes) and the eukaryotic alga Dunaliella color the brines of most saltern crystallizer ponds red. The first report we found from the western world mentioning these red brines dates from 1765: the Encyclopédie of Diderot and coworkers. Earlier descriptions of solar salterns since Roman times do not mention red ponds. These include the Astronomica of Manilius, Pliny's Naturalis Historia (1st century), the description of Italian salterns in De Reditu Suo by Namatianus (5th century), Agricola's De Re Metallica (1556) and an anonymous description of French salterns (1669). This suggests that in earlier times, saltern brines may not have been red. In salterns which are operated today in the traditional way as practiced in the Middle Ages, no red brines are observed. Prokaryotic densities in the salterns of Secovlje (Slovenia) and Ston (Croatia) are an order of magnitude lower than in modern saltern crystallizers. This is probably due to the much shorter residence time of the brine in the traditionally operated salterns. In China, red saltern brines were documented earlier: in Li Shizhen's compendium of Materia Medica Ben Cao Kang Mu, completed in 1578 and based on older sources.
Assuntos
Cloreto de Sódio , Microbiologia da Água , Bacteroidetes/química , Bacteroidetes/crescimento & desenvolvimento , Carotenoides/análise , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Halobacteriaceae/química , Halobacteriaceae/crescimento & desenvolvimento , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XXI , Salinidade , Cloreto de Sódio/química , Cloreto de Sódio/históriaRESUMO
The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by â¼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) â K â L1a â L1b â N â N' â O' â csHR' â taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.
Assuntos
Halobacteriaceae/química , Halorrodopsinas/química , Retinaldeído/química , EstereoisomerismoRESUMO
Optogenetic technologies have often been used as tools for neuronal activation or silencing by light. Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven chloride ion pump. Upon light absorption, a chloride ion passes through the cell membrane, which is accompanied by the temporary binding of a chloride ion with Thr126â¯at binding site-1 (BS1) near the protonated Schiff base in NpHR. However, the mechanism of stabilization of the binding state between a chloride ion and BS1 has not been investigated. Therefore, to identify a key component of the chloride ion transport pathway as well as to acquire dynamic information about the chloride ion-BS1 binding state, we performed a rough analysis of the chloride ion pathway shape followed by molecular dynamics (MD) simulations for both wild-type and mutant NpHR structures. The MD simulations showed that the hydrogen bond between Thr126 and the chloride ion was retained in the wild-type protein, while the chloride ion could not be retained at and tended to leave BS1 in the S81A mutant. We found that the direction of the Thr126 side chain was fixed by a hydroxyl group of Ser81 through a hydrogen bond and that Thr126 bound to a chloride ion in the wild-type protein, while this interaction was lost in the S81A mutant, resulting in rotation of the Thr126 side chain and reduction in the interaction between Thr126 and a chloride ion. To confirm the role of S81, patch clamp recordings were performed using cells expressing NpHR S81A mutant protein. Considered together with the results that the NpHR S81A-expressing cells did not undergo hyperpolarization under light stimulation, our results indicate that Ser81 plays a key role in chloride migration. Our findings might be relevant to ongoing clinical trials using optogenetic gene therapy in blind patients.