Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.316
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 230-236, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39097869

RESUMO

The XmnI Gg -158 C/T polymorphism has been widely associated with fetal hemoglobin (HbF) levels, the severity of disease, and the response to the drug hydroxyurea (HU) in both ß-thalassemia (ß-thal) and sickle cell disease (SCD) patients. However, the functional significance of this single nucleotide polymorphism (SNP) remains unclear. To gain insight, green fluorescence protein (GFP) cassettes harboring the XmnI C or T alleles in their left homology arms (i.e. Gg promoters) were knocked into the Gg gene(s) of K562 cells via CRISPR/Cas9. Subsequently, the GFP fluorescence levels were compared in the ensuing cell populations and isolated clones. In both instances, median fluorescence intensities (MFI) of the knockin cells having the inserted XmnI T allele were higher than those having the XmnI C allele. Our results suggest that the XmnI T allele can increase Gg expression in K562 cells. The possible functional significance of the XmnI Gg -158 C/T polymorphism provides a rationale for the aforementioned associations. Furthermore, the XmnI polymorphism as a functional SNP substantiates its importance as a prognostic marker.


Assuntos
Alelos , Anemia Falciforme , Sistemas CRISPR-Cas , Edição de Genes , Polimorfismo de Nucleotídeo Único , Talassemia beta , Humanos , Talassemia beta/genética , Células K562 , Edição de Genes/métodos , Anemia Falciforme/genética , Sistemas CRISPR-Cas/genética , Polimorfismo de Nucleotídeo Único/genética , Marcadores Genéticos/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Sequência de Bases
2.
Science ; 385(6704): 91-99, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963839

RESUMO

Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in ß-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Antidrepanocíticos/química , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Cristalografia por Raios X , Descoberta de Drogas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Macaca fascicularis , Proteínas do Tecido Nervoso/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
BMC Med Genomics ; 17(1): 191, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026312

RESUMO

OBJECTIVE: The objective of this study was to investigate the therapeutic efficacy of thalidomide across various genotype presentations of ß-thalassemia so as to facilitate the early screening of thalidomide-sensitive thalassemia cases and to understand the impact of iron overload on thalidomide. METHODS: From our initial sample of 52 patients, we observed 48 patients with ß-thalassemia for two years after administration of thalidomide. This cohort included 34 patients with transfusion-dependent thalassemia (TDT) and 14 patients with non-transfusion-dependent thalassemia (NTDT). We recorded the values of hemoglobin (Hb), fetal hemoglobin (HbF), and serum ferritin (SF) in the baseline period and at 1, 3, 6, 12, 18, and 24 months after enrollment, as well as the pre- and post-treatment blood transfusion volume in all 48 cases. According to the increase in Hb levels from baseline during the 6-month observation period, the response to thalidomide was divided into four levels: main response (MaR), minor response (MiR), slow response (SLR), and no response (NR). A decrease in serum ferritin levels compared to baseline was considered alleviation of iron overload. We calculated the overall response rate (ORR) as follows: ORR = MaR + MiR + SLR/number of observed cases. RESULTS: The ORR was 91.7% (44/48 cases), and 72.9% showed MaR (35/48 cases). Among the 34 patients with TDT, 21 patients (61.8%) were free of blood transfusion, and the remaining 13 patients still required blood transfusion, but their total blood transfusion volume reduced by 31.3% when compared to the baseline. We found a total of 33 cases with 10 combinations of advantageous genes, which included 5 cases with ßCD41-42/ßCD17 and 6 cases with ßCD41-42/ß-28. Based on the treatment outcomes among the 48 cases in the observation group, there were 33 cases in the MaR group and 15 cases in the SLR/NR group. There was a difference in HbF between the two groups at baseline (P = 0.041). There were significant differences between the two groups in Hb and HbF at the time points of 6 and 12 months, respectively (P < 0.001). Compared to the baseline measurement, there was a significant decrease in the level of SF at months 12 and 24 (P < 0.001). CONCLUSION: In this study, we identified 10 ß-thalassemia gene combinations that were sensitive to thalidomide. These gene combinations can be used for initial screening and to predict the therapeutic effect of thalidomide in clinical practice. We examined the therapeutic response to thalidomide and found that the administration of thalidomide in combination with standardized iron removal was more beneficial in reducing iron overload.


Assuntos
Genótipo , Talidomida , Talassemia beta , Humanos , Talidomida/uso terapêutico , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/sangue , Feminino , Masculino , Adulto , Resultado do Tratamento , Adolescente , Criança , Ferritinas/sangue , Adulto Jovem , Transfusão de Sangue , Pré-Escolar , Hemoglobina Fetal/genética , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/genética
5.
PLoS One ; 19(7): e0286891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008448

RESUMO

INTRODUCTION: There is a wide range of clinical manifestations in sickle cell disease (SCD). Despite having the same condition, each person's response to disease complications differs greatly. Individuals can be categorized according to the severity of their diseases to determine which group they fall into and receive the appropriate care based on their needs. The relationship between fetal hemoglobin (HbF), lactate dehydrogenase (LDH), and disease severity in Tanzania is little understood. This investigation sought to ascertain the relationship between HbF, LDH, and disease severity in SCD patients at the Bugando Medical Center. METHOD: This cross-sectional study was carried out on SCD patients aged 6 months and older at the Bugando Medical Center in Mwanza, Tanzania. A total of 130 SCD patients were enrolled. The clinical history and laboratory test results for SCD patients were recorded on a specially constructed patient report form. RESULTS: The majority of participants (56.9%) were men. For the population under study, more than half (60.8%) of participants had a moderate clinical phenotype (MCP), followed by 31.5% of asymptomatic participants and 7.7% of people with severe clinical phenotypes (SCP). Participants with SCP had substantially higher levels of LDH, with a mean level of 810.97IU/L (95% CI: 559.31-1062.64) and a p-value of 0.005. The severe clinical phenotype exhibited a significantly higher mean HbF score value of 10.09% (95% CI: 7.44-13.74%) with a p-value of 0.024 when compared to the asymptomatic and moderate clinical phenotypes. CONCLUSION: In SCD patients with SCP compared to ACP and MCP, the HbF levels were higher, but did not show a protective effects, and LDH can be used to predict the severity of SCD.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , L-Lactato Desidrogenase , Índice de Gravidade de Doença , Humanos , Hemoglobina Fetal/análise , Hemoglobina Fetal/metabolismo , Anemia Falciforme/sangue , Anemia Falciforme/complicações , Anemia Falciforme/epidemiologia , Masculino , Tanzânia/epidemiologia , Feminino , L-Lactato Desidrogenase/sangue , Criança , Estudos Transversais , Pré-Escolar , Adolescente , Adulto , Adulto Jovem , Lactente , Pessoa de Meia-Idade
6.
Sci Adv ; 10(31): eadn8750, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083598

RESUMO

Sickle cell disease is a growing health burden afflicting millions around the world. Clinical observation and laboratory studies have shown that the severity of sickle cell disease is ameliorated in individuals who have elevated levels of fetal hemoglobin. Additional pharmacologic agents to induce sufficient fetal hemoglobin to diminish clinical severity is an unmet medical need. We recently found that up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) can induce fetal hemoglobin synthesis in human primary erythroblasts. Here, we report that a small molecule, SR-18292, increases PGC-1α leading to enhanced fetal hemoglobin expression in human erythroid cells, ß-globin yeast artificial chromosome mice, and sickle cell disease mice. In SR-18292-treated sickle mice, sickled red blood cells are significantly reduced, and disease complications are alleviated. SR-18292, or agents in its class, could be a promising additional therapeutic for sickle cell disease.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Hemoglobina Fetal , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Hemoglobina Fetal/metabolismo , Hemoglobina Fetal/genética , Animais , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Modelos Animais de Doenças , Globinas beta/genética , Globinas beta/metabolismo
7.
Cells ; 13(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39056767

RESUMO

Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies. This issue also impacts beta-hemoglobinopathies, such as beta-thalassemia and sickle cell disease (SCD). The definitive cures for these diseases are currently bone marrow transplantation and gene therapy. However, limitations regarding their effective use restrict their worldwide application. Great efforts have been made to identify whether modulators of fetal hemoglobin (HbF) and, to a lesser extent, hemoglobin A2 (HbA2) are possible therapeutic targets. Herein, we performed the post-GWAS in vivo validation of two genes, cyclin D3 (CCND3) and nuclear factor I X (NFIX), previously associated with HbF and HbA2 levels. The absence of Ccnd3 expression in vivo significantly increased g (HbF) and d (HbA2) globin gene expression. Our data suggest that CCND3 is a possible therapeutic target in sickle cell disease. We also confirmed the association of Nfix with γ-globin gene expression and present data suggesting a possible role for Nfix in regulating Kruppel-like transcription factor 1 (Klf1), a master regulator of hemoglobin switching. This study contributes to filling the gap between GWAS variant identification and target validation for beta-hemoglobinopathies.


Assuntos
Hemoglobina Fetal , Estudo de Associação Genômica Ampla , Hemoglobina A2 , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/sangue , Talassemia beta/genética , Talassemia beta/sangue , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Regulação da Expressão Gênica , Hemoglobina A2/genética , Hemoglobina A2/metabolismo , Globinas beta
8.
Adv Exp Med Biol ; 1459: 199-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017845

RESUMO

BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2ß2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and ß-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and ß-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.


Assuntos
Células Eritroides , Proteínas Repressoras , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Expert Opin Ther Targets ; 28(5): 357-373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38861226

RESUMO

INTRODUCTION: HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED: In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION: Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.


Assuntos
Anemia Falciforme , Subunidade alfa do Fator 1 Induzível por Hipóxia , Terapia de Alvo Molecular , Neoplasias , Microambiente Tumoral , Humanos , Anemia Falciforme/fisiopatologia , Anemia Falciforme/tratamento farmacológico , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Hemoglobina Fetal/metabolismo , Neovascularização Patológica
10.
Clin Epigenetics ; 16(1): 79, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879530

RESUMO

BACKGROUND: As new treatment options for patients with higher-risk myelodysplastic syndromes are emerging, identification of prognostic markers for hypomethylating agent (HMA) treatment and understanding mechanisms of their delayed and short-term responses are essential. Early fetal hemoglobin (HbF) induction has been suggested as a prognostic indicator for decitabine-treated patients. Although epigenetic mechanisms are assumed, responding patients' epigenomes have not been thoroughly examined. We aimed to clarify HbF kinetics and prognostic value for azacytidine treated patients, as well as the epigenetic landscape that might influence HbF re-expression and its clinical relevance. RESULTS: Serial HbF measurements by high-performance liquid chromatography (n = 20) showed induction of HbF only among responders (p = 0.030). Moreover, HbF increase immediately after the first azacytidine cycle demonstrated prognostic value for progression-free survival (PFS) (p = 0.032, HR = 0.19, CI 0.24-1.63). Changes in methylation patterns were revealed with methylated DNA genome-wide sequencing analysis (n = 7) for FOG-1, RCOR-1, ZBTB7A and genes of the NuRD-complex components. Targeted pyrosequencing methodology (n = 28) revealed a strong inverse correlation between the degree of γ-globin gene (HBG2) promoter methylation and baseline HbF levels (p = 0.003, rs = - 0.663). A potential epigenetic mechanism of HbF re-expression in azacytidine responders was enlightened by targeted methylation analysis, through hypomethylation of site -53 of HBG2 promoter (p = 0.039, rs = - 0.504), which corresponds to MBD2-NuRD binding site, and to hypermethylation of the CpG326 island of ZBTB7A (p = 0.05, rs = 0.482), a known HbF repressor. These changes were associated to blast cell clearance (pHBG2 = 0.011, rs = 0.480/pZBTB7A = 0.026, rs = 0.427) and showed prognostic value for PFS (pZBTB7A = 0.037, HR = 1.14, CI 0.34-3.8). CONCLUSIONS: Early HbF induction is featured as an accessible prognostic indicator for HMA treatment and the proposed potential epigenetic mechanism of HbF re-expression in azacytidine responders includes hypomethylation of the γ-globin gene promoter region and hypermethylation of the CpG326 island of ZBTB7A. The association of these methylation patterns with blast clearance and their prognostic value for PFS paves the way to discuss in-depth azacytidine epigenetic mechanism of action.


Assuntos
Azacitidina , Metilação de DNA , Epigênese Genética , Hemoglobina Fetal , Síndromes Mielodisplásicas , Humanos , Hemoglobina Fetal/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Azacitidina/farmacologia , Feminino , Masculino , Idoso , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Prognóstico , Idoso de 80 Anos ou mais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928024

RESUMO

Sickle cell disease (SCD) clinically manifests itself with a myriad of complications. Stroke, both ischemic and hemorrhagic, as well as silent white matter changes, occurs at a relatively high prevalence. Understanding why and in whom stroke is most likely to occur is critical to the effective prevention and treatment of individuals with SCD. Genetic studies, including genome- and exome-wide association studies (GWAS and EWAS), have found several key modifiers associated with increased stroke/stroke risk in SCD via mechanisms including Hemoglobin F (HbF) modulation, inflammation, cellular adhesion, endothelial disruption, and hemolysis. We present a review on the modifiers that have most clearly demonstrated an association to date. More studies are needed to validate other potential polymorphisms and identify new ones. Incorporating gene-focused screenings in clinical care could provide avenues for more targeted, more effective, and less toxic prevention of stroke in this population. The data from this review will be used to inform the initial GWAS performed by the International Hemoglobinopathy Research Network (INHERENT) consortium.


Assuntos
Anemia Falciforme , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Acidente Vascular Cerebral , Humanos , Anemia Falciforme/genética , Anemia Falciforme/complicações , Acidente Vascular Cerebral/genética , Genes Modificadores , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
12.
Eur J Haematol ; 113(3): 264-272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38831675

RESUMO

Hydroxyurea (HU) is the most common drug therapy for sickle cell disease (SCD). The clinical benefits of HU derive from its upregulation of fetal hemoglobin (HbF), which reduces aggregation of the mutated sickle hemoglobin protein (HbS) and reduces SCD symptoms and complications. However, some individuals do not respond to HU, or stop responding over time. Unfortunately, current understanding of the mechanism of action of HU is limited, hindering the ability of clinicians to identify those patients who will respond to HU and to optimize treatment for those receiving HU. Given that epigenetic modifications are essential to erythropoiesis and HbF expression, we hypothesize that some effects of HU may be mediated by epigenetic modifications, specifically DNA methylation. However, few studies have investigated this possibility and the effects of HU on DNA methylation remain relatively understudied. In this review, we discuss the evidence linking HU treatment to DNA methylation changes and associated gene expression changes, with an emphasis on studies that were performed in individuals with SCD. Overall, although HU can affect DNA methylation, research on these changes and their clinical effects remains limited. Further study is likely to contribute to our understanding of hematopoiesis and benefit patients suffering from SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Metilação de DNA , Epigênese Genética , Hidroxiureia , Hidroxiureia/uso terapêutico , Hidroxiureia/farmacologia , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Humanos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Antidrepanocíticos/uso terapêutico , Antidrepanocíticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hemoglobina Fetal/genética , Resultado do Tratamento
13.
Front Biosci (Schol Ed) ; 16(2): 11, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38939975

RESUMO

BACKGROUND: Sickle cell disease (SCD) is a major heritable genetic disease in sub-Saharan Africa, including Mauritania. Fetal hemoglobin (HbF) can affect the pathophysiology, moderate the clinical course, and offer prospects for curative treatment of SCD. This study aimed to investigate the influence of single nucleotide polymorphisms (SNPs) in the BCL11A gene on the levels of HbF and hematological parameters in Mauritanian sickle cell (HbSS) patients. METHODS: Complete blood count was assessed in 565 patients suspected to have SCD. Polymerase chain reaction (PCR)-restriction fragment length polymorphism was performed to identify the HbSS, and sequencing was used for genotyping three SNPs: rs4671393 (A>G) and rs11886868 (C>T) in the intron 2 and rs1052520 (G>A) in the 3'UTR regions of the BCL11A gene in 50 sickle cell patients. RESULTS: The prevalence of HbSS among the study population was 8.8% (50/565), and the mean (± standard deviation) of HbF level was 15.0% (± 6.0%). Sequencing showed the presence of three genotypes: AA (13.6%), AG (46.6%), GG (39.6%) in rs4671393; CC (17.6%), CT (48.7%), and TT (33.6%) in rs11886868. All samples from HbSS individuals displayed a wild-type genotype in the rs1052520 allele. The prevalence of minor alleles A (rs4671393) and C (rs11886868) were 37% and 39%, respectively. There was a statistically significant association (p = 0.034) between rs4671393 SNP and elevated HbF (mean 12.72 ± 6.26%). CONCLUSIONS: The study of three SNPs in the BCL11A locus in Mauritanian patients with SCD showed a significant association of rs4671393 allele with the HbF level. Further research is needed to explore additional SNPs in the BCL11A locus and investigate other genetic markers reported to modulate HbF levels, such as HBS1L-MYB and Xmn1-HBG2, to improve the management of this potentially life-threatening condition in Mauritania.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/sangue , Feminino , Masculino , Adulto , Proteínas Repressoras/genética , Mauritânia , Genótipo , Proteínas Nucleares/genética , Adolescente , Proteínas de Transporte/genética , Adulto Jovem , Criança
14.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38736250

RESUMO

In acute lymphoblastic leukaemia (ALL), elevated foetal haemoglobin (HbF) levels have been associated with the prognosis of patients. Genetic variants in HbF regulatory genes: BAF chromatin remodelling complex subunit (BCL11A), HBS1L-MYB transcriptional GTPase intergenic region (HBS1L-MYB), Krüppel-like factor 1 (KLF1), haemoglobin gamma subunit 2 (HBG2), haemoglobin gamma subunit 1 (HBG1), and haemoglobin subunit beta pseudogene 1 (HBBP1) are often associatedwith elevatedHbF concentration. This study investigated the association of genetic variants in HbF regulatory genes with HbF concentration, unfavourable prognosis, and outcome in children with ALL.We quantified HbF concentration and genotyped 17 genetic variants in 48 patients with ALL and 64 children without ALL as a reference group. HbF concentrationwas higher in patients than in the reference group (4.4%vs 1.4%), and 75%(n = 36) of thepatientshadHbF>2.5%.Unfavourable prognosis ALL was established in 68.8% (n = 33) of the patients. Variant HBG2 rs7482144 was associated with high HbF concentration (P = 0.015); while HBS1L-MYB rs9399137 (P = 0.001), HBG2 rs7482144 (P = 0.001) and the ß-globin genes HBG2, HBG1, and HBPP1 haplotypeTGC(P = 0.017) with unfavourable prognosisALL.Additionally, variantBCL11A rs4671393 showed a protective role (P = 0.0001). In conclusion, variants HBG2 rs7482144, HBS1L-MYB rs9399137 and BCL11A rs4671393 may play a significant role in ALL.


Assuntos
Hemoglobina Fetal , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Repressoras , Humanos , Hemoglobina Fetal/genética , Feminino , Masculino , Criança , Prognóstico , Proteínas Repressoras/genética , Pré-Escolar , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Lactente , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Transporte/genética , Adolescente , Genótipo , gama-Globinas/genética , Proteínas de Ligação ao GTP
16.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38657265

RESUMO

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Assuntos
Hemoglobina Fetal , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Talassemia beta , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Antígenos CD34 , Talassemia beta/terapia , Talassemia beta/genética , Transfusão de Sangue , Bussulfano/uso terapêutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Proteínas Repressoras/genética , Condicionamento Pré-Transplante , Transplante Autólogo , Agonistas Mieloablativos/uso terapêutico , América do Norte , Europa (Continente)
17.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38661449

RESUMO

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antígenos CD34 , Bussulfano/uso terapêutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Edição de Genes , Células-Tronco Hematopoéticas , Proteínas Repressoras , Condicionamento Pré-Transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Agonistas Mieloablativos/uso terapêutico , Europa (Continente) , América do Norte
19.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673849

RESUMO

In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of ß-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.


Assuntos
Anemia Falciforme , Farmacogenética , Talassemia beta , Humanos , Anemia Falciforme/genética , Anemia Falciforme/tratamento farmacológico , Talassemia beta/genética , Talassemia beta/tratamento farmacológico , Farmacogenética/métodos , Hemoglobina Fetal/genética , gama-Globinas/genética , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia
20.
Genes (Basel) ; 15(4)2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38674403

RESUMO

The aim of this study was to identify genetic markers in the HBB Cluster; HBS1L-MYB intergenic region; and BCL11A, KLF1, FOX3, and ZBTB7A genes associated with the heterogeneous phenotypes of Sickle Cell Anemia (SCA) using next-generation sequencing, as well as to assess their influence and prevalence in an Angolan population. Hematological, biochemical, and clinical data were considered to determine patients' severity phenotypes. Samples from 192 patients were sequenced, and 5,019,378 variants of high quality were registered. A catalog of candidate modifier genes that clustered in pathophysiological pathways important for SCA was generated, and candidate genes associated with increasing vaso-occlusive crises (VOC) and with lower fetal hemoglobin (HbF) were identified. These data support the polygenic view of the genetic architecture of SCA phenotypic variability. Two single nucleotide polymorphisms in the intronic region of 2q16.1, harboring the BCL11A gene, are genome-wide and significantly associated with decreasing HbF. A set of variants was identified to nominally be associated with increasing VOC and are potential genetic modifiers harboring phenotypic variation among patients. To the best of our knowledge, this is the first investigation of clinical variation in SCA in Angola using a well-customized and targeted sequencing approach.


Assuntos
Anemia Falciforme , Proteínas de Ligação ao GTP , Fenótipo , Polimorfismo de Nucleotídeo Único , Humanos , Anemia Falciforme/genética , Masculino , Criança , Feminino , Genes Modificadores , Pré-Escolar , Adolescente , Angola , Proteínas Repressoras/genética , Hemoglobina Fetal/genética , Fatores de Transcrição Kruppel-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA