Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.070
Filtrar
1.
PLoS One ; 19(5): e0302913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728358

RESUMO

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Assuntos
Galinhas , Hepatócitos , Lipopolissacarídeos , Poli I-C , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Fatores Imunológicos/farmacologia , Ácidos Teicoicos/farmacologia , Células Cultivadas , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Técnicas de Cocultura , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Citocinas/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia
2.
J Agric Food Chem ; 72(19): 10897-10908, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691522

RESUMO

Gramine (GRM), which occurs in Gramineae plants, has been developed to be a biological insecticide. Exposure to GRM was reported to induce elevations of serum ALT and AST in rats, but the mechanisms of the observed hepatotoxicity have not been elucidated. The present study aimed to identify reactive metabolites that potentially participate in the toxicity. In rat liver microsomal incubations fortified with glutathione or N-acetylcysteine, one oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetylcysteine conjugate (M3) were detected after exposure to GRM. The corresponding conjugates were detected in the bile and urine of rats after GRM administration. CYP3A was the main enzyme mediating the metabolic activation of GRM. The detected GSH and NAC conjugates suggest that GRM was metabolized to a quinone imine intermediate. Both GRM and M1 showed significant toxicity to rat primary hepatocytes.


Assuntos
Ativação Metabólica , Citocromo P-450 CYP3A , Hepatócitos , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Alcaloides/metabolismo
3.
Sci Rep ; 14(1): 10846, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736008

RESUMO

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Assuntos
Diferenciação Celular , Hepatócitos , Nanofibras , Organoides , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/citologia , Diferenciação Celular/efeitos dos fármacos , Nanofibras/química , Células Cultivadas , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética
4.
Autoimmunity ; 57(1): 2350202, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721694

RESUMO

Yinchenhao Decoction (YCHD) is a classic prescription in traditional Chinese medicine (TCM). It appears to play an important role in anti-inflammation and autoimmunity protection. As one of the key active ingredients in YCHD, quercetin is a novel anti-inflammatory metabolite that exerts protective effects in many autoimmune diseases. However, its role in autoimmune hepatitis (AIH)-related hepatic injury has not been studied. The aim of this study was to reveal the hepatocyte protective mechanism of quercetin. In this study, we used Concanavalin A (Con A) to establish an in vitro hepatocyte injury-associated AIH model. Brl3a hepatocyte injury was induced by the supernatant of J774A.1 cells treated with Con A. We found that quercetin mitigated Con A-induced via macrophage-mediated Brl3a hepatocyte injury. Quercetin administration reduced the levels of alanine transaminase (ALT) and aspartate transaminase (AST) in the supernatant of Con A-treated Brl3a cells and attenuated the infiltration of J774A.1 macrophages induced by Con A. Moreover, quercetin effectively inhibited the expression of proinflammatory cytokines including interleukin-1ß (IL-1ß) by Con A. Furthermore, quercetin decreased hepatocyte apoptosis and ferroptosis levels in the macrophage-induced hepatocyte injury model. In conclusion, our study indicates that quercetin alleviates macrophage-induced hepatocyte damage by reducing the inflammatory response, apoptosis and ferroptosis. Our work suggests that quercetin might be a potential therapeutic strategy for AIH.


Assuntos
Anti-Inflamatórios , Apoptose , Ferroptose , Hepatócitos , Macrófagos , Quercetina , Quercetina/farmacologia , Quercetina/uso terapêutico , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ferroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Hepatite Autoimune/metabolismo , Hepatite Autoimune/etiologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/imunologia , Concanavalina A , Citocinas/metabolismo
5.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727775

RESUMO

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Assuntos
Apoptose , Modelos Animais de Doenças , Flavanonas , Hepatectomia , Hepatócitos , Interleucina-1beta , Fígado , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Hepatectomia/métodos , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Colloids Surf B Biointerfaces ; 238: 113904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603845

RESUMO

Ursodeoxycholic acid (UDCA) is the preferred treatment for various types of cholestasis, however, its effectiveness is limited because of its insolubility in water. We used polyethylene glycol (PEG) and cationic polymer polyethylenimine (PEI) to double-modify graphite oxide (PPG) as a drug delivery system. UDCA was successfully loaded onto PPG through intermolecular interactions to form UDCA-PPG nanoparticles. UDCA-PPG nanoparticles not only improve the solubility and dispersibility of UDCA, but also have good biocompatibility and stability, which significantly improve the delivery rate of UDCA. The results indicated that UDCA-PPG significantly reduced ROS levels, promoted cell proliferation, protected mitochondrial membrane potential, reduced DNA damage and reduced apoptosis in the DCA-induced cell model. In a mouse cholestasis model established by bile duct ligation (BDL), UDCA-PPG improved liver necrosis, fibrosis, and mitochondrial damage and reduced serum ALT and AST levels, which were superior to those in the UDCA-treated group. UDCA-PPG reduced the expression of the apoptosis-related proteins, Caspase-3 and Bax, increased the expression of Bcl-2, and reduced the expression of the oxidative stress-related proteins, NQO and HO-1, as well as the autophagy-related proteins LC3, p62 and p-p62. Therefore, UDCA-PPG can enhance the therapeutic effect of UDCA in cholestasis, by significantly improving drug dispersibility and stability, extending circulation time in vivo, promoting absorption, decreasing ROS levels, enhancing autophagy flow and inhibiting apoptosis via the Bcl-2/Bax signaling pathway.


Assuntos
Apoptose , Colestase , Grafite , Hepatócitos , Nanocompostos , Ácido Ursodesoxicólico , Grafite/química , Grafite/farmacologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/química , Animais , Apoptose/efeitos dos fármacos , Nanocompostos/química , Camundongos , Colestase/tratamento farmacológico , Colestase/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Humanos
7.
Int J Biol Macromol ; 267(Pt 1): 131507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604419

RESUMO

Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.


Assuntos
Bass , Metabolismo dos Lipídeos , Fator B de Crescimento do Endotélio Vascular , Animais , Bass/genética , Bass/metabolismo , Metabolismo dos Lipídeos/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Clonagem Molecular , Sequência de Aminoácidos , Filogenia , Fígado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Adipogenia/genética
8.
Sci Total Environ ; 927: 172237, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582105

RESUMO

Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.


Assuntos
Acetonitrilas , Metabolômica , Transcriptoma , Humanos , Transcriptoma/efeitos dos fármacos , Células Hep G2 , Acetonitrilas/toxicidade , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
9.
Viruses ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675973

RESUMO

Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William's E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.


Assuntos
Adenovírus Humanos , Diferenciação Celular , Dimetil Sulfóxido , Replicação Viral , Dimetil Sulfóxido/farmacologia , Humanos , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Replicação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Hepatócitos/virologia , Hepatócitos/efeitos dos fármacos , Infecções por Adenovirus Humanos/virologia , Meios de Cultura/química
10.
Ecotoxicol Environ Saf ; 276: 116261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574644

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Succinato Desidrogenase , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/toxicidade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Linhagem Celular
11.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615641

RESUMO

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Assuntos
DNA Mitocondrial , Hepatócitos , Estresse Oxidativo , Receptor Toll-Like 9 , Tricloroetileno , Animais , Camundongos , Hepatócitos/efeitos dos fármacos , Tricloroetileno/toxicidade , Receptor Toll-Like 9/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Doença Hepática Induzida por Substâncias e Drogas , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
12.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626609

RESUMO

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Cálcio , Fluorocarbonos , Resistência à Insulina , Fígado , Lisossomos , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Animais , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Poluentes Ambientais/toxicidade , Canais de Cátion TRPM/metabolismo , Camundongos Endogâmicos C57BL
13.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657074

RESUMO

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Assuntos
Ritmo Circadiano , Hepatócitos , Inflamação , Fígado , Humanos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/metabolismo , Fígado/metabolismo , Acetaminofen/farmacologia , Atorvastatina/farmacologia , Citocinas/metabolismo , Inativação Metabólica , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Cultivadas
14.
Cell Death Dis ; 15(4): 283, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649362

RESUMO

Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.


Assuntos
Acetaminofen , Hepatócitos , Falência Hepática Aguda , Sirtuínas , Animais , Humanos , Masculino , Camundongos , Acetaminofen/efeitos adversos , Apoptose/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Sirtuínas/metabolismo , Sirtuínas/genética
15.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663190

RESUMO

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Assuntos
Aflatoxina B1 , Vesículas Extracelulares , Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Mitofagia , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Aflatoxina B1/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Mitofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
16.
Cell Mol Life Sci ; 81(1): 200, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684535

RESUMO

BACKGROUND AND AIM: Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS: PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-ß galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS: Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-ß galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION: In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.


Assuntos
Senescência Celular , Dano ao DNA , Hepatócitos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Senescência Celular/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Fenótipo Secretor Associado à Senescência , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Doxorrubicina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino
17.
Toxicology ; 504: 153804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614205

RESUMO

Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Quimiocinas CXC , Inibidor de Quinase Dependente de Ciclina p21 , Hepatócitos , Camundongos Endogâmicos C57BL , Acetaminofen/toxicidade , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Camundongos , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Regeneração Hepática/efeitos dos fármacos , Overdose de Drogas , Analgésicos não Narcóticos/toxicidade
18.
Biomed Pharmacother ; 174: 116598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615609

RESUMO

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Dieta Hiperlipídica , Flavonoides , Metabolismo dos Lipídeos , Lipase Lipoproteica , Receptores X do Fígado , Propiofenonas , Peixe-Zebra , Animais , Receptores X do Fígado/metabolismo , Propiofenonas/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Lipase Lipoproteica/metabolismo , Receptores X de Retinoides/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Chalconas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
19.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567751

RESUMO

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Assuntos
Antocianinas , Quitosana , Quitosana/análogos & derivados , Hepatócitos , Nanopartículas , Ácido Palmítico , Quitosana/química , Antocianinas/química , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Ácido Palmítico/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Hep G2
20.
Food Chem Toxicol ; 188: 114681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677401

RESUMO

The methylimidazolium ionic liquid M8OI (1-octyl-3-methylimidazolium chloride, also known as [C8mim]Cl) has been detected in the environment and may represent a hazard trigger for the autoimmune liver disease primary biliary cholangitis, based in part on studies using a rat liver progenitor cell. The effect of M8OI on an equivalent human liver progenitor (undifferentiated HepaRG cells; u-HepaRG) was therefore examined. u-HepaRG cells were less sensitive (>20-fold) to the toxic effects of M8OI. The relative insensitivity of u-HepaRG cells to M8OI was in part, associated with a detoxification by monooxygenation via CYP3A7 followed by further oxidation to a carboxylic acid. Expression of CYP3A7 - in contrast to the related adult hepatic CYP3A4 and CYP3A5 forms - was confirmed in u-HepaRG cells. However, blocking M8OI metabolism with ketoconazole only partly sensitized u-HepaRG cells. Despite similar proliferation rates, u-HepaRG cells consumed around 75% less oxygen than B-13 cells, reflective of reduced dependence on mitochondrial activity (Crabtree effect). Replacing glucose with galactose, resulted in an increase in u-HepaRG cell sensitivity to M8OI, near similar to that seen in B-13 cells. u-HepaRG cells therefore show reduced sensitivity to the toxic effects of M8OI through a combination of metabolic detoxification and their reduced reliance on mitochondrial function.


Assuntos
Citocromo P-450 CYP3A , Mitocôndrias , Oxirredução , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Imidazóis/toxicidade , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA