Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Basic Clin Pharmacol Toxicol ; 135(2): 148-163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887973

RESUMO

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.


Assuntos
Citocromo P-450 CYP3A , Hepatomegalia , Regeneração Hepática , Fígado , Receptor de Pregnano X , Carbonitrila de Pregnenolona , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Regeneração Hepática/efeitos dos fármacos , Masculino , Citocromo P-450 CYP3A/metabolismo , Carbonitrila de Pregnenolona/farmacologia , Fígado/metabolismo , Fígado/enzimologia , Fígado/efeitos dos fármacos , Ratos , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/genética , Ratos Sprague-Dawley , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética , Esteroide 16-alfa-Hidroxilase/metabolismo , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Hepatectomia
2.
Drug Metab Dispos ; 52(7): 597-605, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697851

RESUMO

Pregnane X receptor (PXR) is essential in the regulation of liver homeostasis, and the gut microbiota is closely linked to liver physiologic and pathologic status. We previously found that activation of PXR significantly promotes liver enlargement through interaction with yes-associated protein (YAP). However, whether gut microbiota contributes to PXR-induced hepatomegaly and the involved mechanisms remain unclear. In this study, C57BL/6 mice were administered the mouse-specific agonist pregnenolone 16α-carbonitrile (PCN) for 5 days. Depletion of gut microbiota was achieved using broad-spectrum antibiotics (ABX) and fecal microbiota transplantation (FMT) was performed to restore the gut microbia. The composition of gut microbiota was analyzed by 16S rRNA sequencing, while the expression of PXR, YAP, and their downstream target genes and proteins were assessed. The results indicated that PCN treatment altered the composition and abundance of specific bacterial taxa. Furthermore, depletion of gut microbiota using ABX significantly attenuated PCN-induced hepatomegaly. FMT experiments further demonstrated that the fecal microbiota from PCN-treated mice could induce liver enlargement. Mechanistic studies revealed that ABX treatment impeded the PXR and YAP activation induced by PCN, as evidenced by decreased expression of PXR, YAP, and their downstream targets. Moreover, alterations in PXR and YAP activation were likely contributing to hepatomegaly in recipient mice following FMT from PCN-treated mice. Collectively, the current study demonstrated that gut microbiota is involved in PCN-induced hepatomegaly via regulating PXR and YAP activation, providing potential novel insights into the involvement of gut microbiota in PXR-mediated hepatomegaly. SIGNIFICANCE STATEMENT: This work describes that the composition of gut microbiota is altered in mouse pregnane X receptor (PXR) agonist pregnenolone 16α-carbonitrile (PCN)-induced hepatomegaly. Treatment with an antibiotic cocktail depletes the intestinal microbiota, leading to the impairment of liver enlargement caused by PCN. Additionally, fecal microbiota transplantation from PCN-treated mice induces liver enlargement. Further study revealed that gut microbiota is involved in hepatomegaly via regulating PXR and yes-associated protein activation.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatomegalia , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Carbonitrila de Pregnenolona , Proteínas de Sinalização YAP , Animais , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Receptor de Pregnano X/agonistas , Receptor de Pregnano X/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Carbonitrila de Pregnenolona/farmacologia , Proteínas de Sinalização YAP/metabolismo , Masculino , Transplante de Microbiota Fecal/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731931

RESUMO

The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.


Assuntos
Hepatomegalia , Hipercolesterolemia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Fígado/patologia , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Metabolismo dos Lipídeos/genética , Deleção de Genes , Transdução de Sinais , Colesterol/metabolismo , Camundongos Knockout , Masculino , Ácidos e Sais Biliares/metabolismo
4.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734220

RESUMO

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Assuntos
Proliferação de Células , Hepatócitos , Hepatomegalia , Fígado , PPAR alfa , Receptor de Pregnano X , Pirimidinas , Proteínas de Sinalização YAP , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hidrocarboneto de Aril Hidroxilases , beta Catenina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP3A , Citocromo P-450 CYP4A/metabolismo , Citocromo P-450 CYP4A/genética , Família 2 do Citocromo P450 , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Antígeno Ki-67/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , PPAR alfa/agonistas , PPAR alfa/metabolismo , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases , Proteínas de Sinalização YAP/metabolismo
5.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296638

RESUMO

Research on Alzheimer's disease (AD) has classically focused on alterations that occur in the brain and their intra- and extracellular neuropathological hallmarks. However, the oxi-inflammation hypothesis of aging may also play a role in neuroimmunoendocrine dysregulation and the disease's pathophysiology, where the liver emerges as a target organ due to its implication in regulating metabolism and supporting the immune system. In the present work, we demonstrate organ (hepatomegaly), tissue (histopathological amyloidosis), and cellular oxidative stress (decreased glutathione peroxidase and increased glutathione reductase enzymatic activities) and inflammation (increased IL-6 and TNF𝛼) as hallmarks of hepatic dysfunction in 16-month-old male and female 3xTg-AD mice at advanced stages of the disease, and as compared to age- and sex-matched non-transgenic (NTg) counterparts. Moreover, liver-brain axis alterations were found through behavioral (increased neophobia) and HPA axis correlations that were enhanced under forced isolation. In all cases, sex (male) and isolation (naturalistic and forced) were determinants of worse hepatomegaly, oxidative stress, and inflammation progression. In addition, obesity in old male NTg mice was translated into a worse steatosis grade. Further research is underway determine whether these alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for AD research.


Assuntos
Doença de Alzheimer , Camundongos , Masculino , Feminino , Animais , Doença de Alzheimer/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Camundongos Transgênicos , Inflamação/patologia , Obesidade/metabolismo
6.
Acta Pharmacol Sin ; 44(10): 2037-2047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37193756

RESUMO

Peroxisome proliferator-activated receptor alpha (PPARα) activation-induced hepatomegaly is accompanied by hepatocyte hypertrophy around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area. However, the molecular mechanisms underlying this spatial change of hepatocytes remains unclear. In this study, we examined the characteristics and possible reasons for the zonation distinction of hypertrophy and proliferation during PPARα activation-induced mouse liver enlargement. Mice were injected with corn oil or a typical mouse PPARα agonist WY-14643 (100 mg·kg-1·d-1, i.p.) for 1, 2, 3, 5 or 10 days. At each time point, the mice were sacrificed after the final dose, and liver tissues and serum were harvested for analysis. We showed that PPARα activation induced zonal changes in hepatocyte hypertrophy and proliferation in the mice. In order to determine the zonal expression of proteins related to hepatocyte hypertrophy and proliferation in PPARα-induced liver enlargement, we performed digitonin liver perfusion to separately destroy the hepatocytes around the CV or PV areas, and found that PPARα activation-induced increase magnitude of its downstream targets such as cytochrome P450 (CYP) 4 A and acyl-coenzyme A oxidase 1 (ACOX1) levels around the CV area were higher compared with those around the PV area. Upregulation of proliferation-related proteins such as cell nuclear antigen (PCNA) and cyclin A1 (CCNA1) after WY-14643-induced PPARα activation mainly occurred around the PV area. This study reveals that the zonal expression of PPARα targets and proliferation-related proteins is responsible for the spatial change of hepatocyte hypertrophy and proliferation after PPARα activation. These findings provide a new insight into the understanding of PPARα activation-induced liver enlargement and regeneration.


Assuntos
Hepatócitos , PPAR alfa , Animais , Camundongos , Proliferação de Células , Hepatócitos/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Fígado/metabolismo , Camundongos Knockout , PPAR alfa/agonistas
7.
Pharmacol Res ; 188: 106666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657504

RESUMO

Pregnane X receptor (PXR) plays an important role in the regulation of metabolic homeostasis. Yes-associated protein (YAP) is a critical regulator of liver size and liver regeneration. Recently, we reported that PXR-induced liver enlargement and regeneration depend on YAP signalling, but the underlying mechanisms remain unclear. This study aimed to reveal how PXR regulates or interacts with YAP signalling during PXR-induced hepatomegaly and liver regeneration. Immunoprecipitation (IP), Co-IP and GST pull-down assays were performed in vitro to reveal the regulatory mechanisms involved in the PXR-YAP interaction. The roles of YAP-TEAD binding and Sirt2-driven deacetylation and polyubiquitination of YAP were further investigated in vitro and in vivo. The results showed that the ligand-binding domain (LBD) of PXR and the WW domain of YAP were critical for the PXR-YAP interaction. Furthermore, disruption of the YAP-TEAD interaction using the binding inhibitor verteporfin significantly decreased PXR-induced liver enlargement and regeneration after 70 % partial hepatectomy (PHx). Mechanistically, PXR activation significantly decreased YAP acetylation, which was interrupted by the sirtuin inhibitor nicotinamide (NAM). In addition, p300-induced YAP acetylation contributed to K48-linked YAP ubiquitination. Interestingly, PXR activation remarkably inhibited K48-linked YAP ubiquitination while inducing K63-linked YAP polyubiquitination. Sirt2 interference abolished the deacetylation and K63-linked polyubiquitination of YAP, suggesting that the PXR-induced deacetylation and polyubiquitination of YAP are Sirt2 dependent. Taken together, this study demonstrates that PXR induce liver enlargement and regeneration via the regulation of YAP acetylation and ubiquitination and YAP-TEAD binding, providing evidences for using PXR as potential target to promote hepatic development and liver repair.


Assuntos
Hepatomegalia , Fígado , Receptor de Pregnano X , Sirtuína 2 , Proteínas de Sinalização YAP , Animais , Camundongos , Hepatomegalia/metabolismo , Receptor de Pregnano X/metabolismo , Sirtuína 2/metabolismo , Ubiquitinação , Proteínas de Sinalização YAP/metabolismo , Fígado/fisiologia
8.
Acta Pharmacol Sin ; 44(1): 169-177, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35773338

RESUMO

Pregnane X receptor (PXR) is highly expressed in the liver and plays a pivotal role in xenobiotic and endobiotic metabolism. We previously reported that PXR activation by its specific mouse agonist pregnenolone 16α-carbonitrile (PCN) significantly induces liver enlargement and lipid accumulation. However, the effect of long-term PCN treatment on PXR and mouse liver is still unknown. This study aimed to explore the influence of long-term administration of PCN on mouse liver and hepatic lipid homeostasis. Male C57BL/6 mice were injected intraperitoneally with PCN (100 mg/kg once a week) for 42 weeks. Serum and liver samples were collected for biochemical and histological analysis. PXR activation was investigated by Western blot. Ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS)-based lipidomics analysis was performed to explore the change in different lipid categories. The results showed that long-term treatment with PCN significantly promoted hepatomegaly without hepatocyte proliferation and enlargement. Long-term treatment with PCN did not upregulate PXR target proteins in mice, and there was no significant upregulation of CYP3A11, CYP2B10, UGT1A1, MRP2, or MRP4. Lipidomics analysis showed obvious hepatic lipid accumulation in the PCN-treated mice, and the most significant change was found in triglycerides (TGs). Additionally, long-term treatment with PCN had no risk for carcinogenesis. These findings demonstrated that long-term PCN treatment induces hepatomegaly and lipid accumulation without hepatocyte proliferation or enlargement.


Assuntos
Receptores de Esteroides , Animais , Masculino , Camundongos , Proliferação de Células , Hepatócitos , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo
9.
Chem Biol Interact ; 367: 110133, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030841

RESUMO

Nuclear receptor pregnane X receptor (PXR) can induce significant liver enlargement through hepatocyte hypertrophy and proliferation. A previous report showed that during the process of PXR-induced liver enlargement, hepatocyte hypertrophy occurs around the central vein (CV) area while hepatocyte proliferation occurs around the portal vein (PV) area. However, the features of this spatial change remain unclear. Therefore, this study aims to explore the features of the spatial changes in hepatocytes in PXR-induced liver enlargement. PXR-induced spatial changes in hepatocyte hypertrophy and proliferation were confirmed in C57BL/6 mice. The liver was perfused with digitonin to destroy the hepatocytes around the CV or PV areas, and then the regional expression of proteins related to hepatocyte hypertrophy and proliferation was further measured. The results showed that the expression of PXR downstream proteins, such as cytochrome P450 (CYP) 3A11, CYP2B10, P-glycoprotein (P-gp) and organ anion transporting polypeptide 4 (OATP4) was upregulated around the CV area, while the expression of proliferation-related proteins such as cyclin B1 (CCNB1), cyclin D1 (CCND1) and serine/threonine NIMA-related kinase 2 (NEK2) was upregulated around the PV area. At the same time, the expression of cyclin-dependent kinase inhibitors such as retinoblastoma-like protein 2 (RBL2), cyclin-dependent kinase inhibitor 1B (CDKN1B) and CDKN1A was downregulated around the PV area. This study demonstrated that the spatial change in PXR-induced hepatocyte hypertrophy and proliferation is associated with the regional expression of PXR downstream targets and proliferation-related proteins and the regional distribution of triglycerides (TGs). These findings provide new insight into the understanding of PXR-induced hepatomegaly.


Assuntos
Ciclina D1 , Receptores de Esteroides , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Ânions/metabolismo , Proliferação de Células , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Digitonina/metabolismo , Hepatócitos/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hipertrofia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/metabolismo , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Serina/metabolismo , Treonina/metabolismo , Triglicerídeos/metabolismo
10.
Cell Mol Life Sci ; 79(8): 397, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790616

RESUMO

Change in cell size may bring in profound impact to cell function and survival, hence the integrity of the organs consisting of those cells. Nevertheless, how cell size is regulated remains incompletely understood. We used the fluorescent zebrafish transgenic line Tg-GGH/LR that displays inducible folate deficiency (FD) and hepatomegaly upon FD induction as in vivo model. We found that FD caused hepatocytes enlargement and increased liver stiffness, which could not be prevented by nucleotides supplementations. Both in vitro and in vivo studies indicated that RIPK3/MLKL-dependent necroptotic pathway and Hippo signaling interactively participated in this FD-induced hepatocytic enlargement in a dual chronological and cooperative manner. FD also induced hepatic inflammation, which convenes a dialog of positive feedback loop between necroptotic and Hippo pathways. The increased MMP13 expression in response to FD elevated TNFα level and further aggravated the hepatocyte enlargement. Meanwhile, F-actin was circumferentially re-allocated at the edge under cell membrane in response to FD. Our results substantiate the interplay among intracellular folate status, pathways regulation, inflammatory responses, actin cytoskeleton and cell volume control, which can be best observed with in vivo platform. Our data also support the use of this Tg-GGH/LR transgenic line for the mechanistical and therapeutic research for the pathologic conditions related to cell size alteration.


Assuntos
Necroptose , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Ácido Fólico/metabolismo , Hepatócitos/metabolismo , Hepatomegalia/metabolismo , Hipertrofia/metabolismo , Inflamação/patologia , Peixe-Zebra/genética
11.
Toxicology ; 467: 153088, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979169

RESUMO

Elemicin (Ele) is a constituent of natural alkenylbenzene present in many foods and herbs. Ele exposure could induce hepatomegaly and hepatosteatosis. However, the role of gut microbiota in Ele-induced hepatotoxicity remains unclear. Here, the mice were treated with 200 mg/kg/day of Ele for 4 weeks with or without depletion of gut microbiota by antibiotics cocktail treatment. The mice treated with Ele showed enlargement of liver and slight hepatosteatosis, accompanied by higher levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG). Ele could also shift the structure of fecal microbiota and increase the richness. Functional prediction of the microbiota revealed the enrichment of non-alcoholic fatty liver disease pathway upon Ele exposure. Compared with control group, Patescibacteria and Epsilonbacteraeota were significantly enriched at the phylum level upon Ele treatment. A total of 20 genera were significant with respect specifically to Ele exposure, including decreased Alistipes and elevated Ruminiclostridium_9 and Gordonibacter. Among them, 13 retained significant associations with ALT and TG by Spearman correlation test, 4 were correlated with AST. Further MaAsLin analysis revealed that ALT was associated with 4 differentially abundant genera, such as Alistipes and Ruminiclostridium_9 and Gordonibacter. In addition, only Alistipes was significantly correlated with serum TG. Intriguingly, depletion of the microbiota significantly attenuated hepatosteatosis, restore increased ALT, AST and TG and inhibit the expression of genes involved in de novo lipogenesis and adipocyte differentiation, such as Fasn, ADIPOQ and leptin. Collectively, depletion of gut microbiota protected against Ele induced aberrant lipid metabolism in mice.


Assuntos
Bactérias/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado Gorduroso/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatomegalia/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pirogalol/análogos & derivados , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Disbiose , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Fígado Gorduroso/patologia , Hepatomegalia/metabolismo , Hepatomegalia/microbiologia , Hepatomegalia/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Pirogalol/toxicidade , Triglicerídeos/sangue
12.
Acta Pharmacol Sin ; 43(1): 146-156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33782543

RESUMO

Mifepristone (Mif), an effective synthetic steroidal antiprogesterone drug, is widely used for medical abortion and pregnancy prevention. Due to its anti-glucocorticoid effect, high-dose Mif is also used to treat Cushing's syndrome. Mif was reported to active pregnane X receptor (PXR) in vitro and PXR can induce hepatomegaly via activation and interaction with yes-associated protein (YAP) pathway. High-dose Mif was reported to induce hepatomegaly in rats and mice, but the underlying mechanism remains unclear. Here, the role of PXR was studied in Mif-induced hepatomegaly in C57BL/6 mice and Pxr-knockout mice. The results demonstrated that high-dose Mif (100 mg · kg-1 · d-1, i.p.) treatment for 5 days significantly induced hepatomegaly with enlarged hepatocytes and promoted proliferation, but low dose of Mif (5 mg · kg-1 · d-1, i.p.) cannot induce hepatomegaly. The dual-luciferase reporter gene assays showed that Mif can activate human PXR in a concentration-dependent manner. In addition, Mif could promote nuclear translocation of PXR and YAP, and significantly induced the expression of PXR, YAP, and their target proteins such as CYP3A11, CYP2B10, UGT1A1, ANKRD, and CTGF. However, Mif (100 mg · kg-1 · d-1, i.p.) failed to induce hepatomegaly in Pxr-knockout mice, as well as hepatocyte enlargement and proliferation, further indicating that Mif-induced hepatomegaly is PXR-dependent. In summary, this study demonstrated that PXR-mediated Mif-induced hepatomegaly in mice probably via activation of YAP pathway. This study provides new insights in Mif-induced hepatomegaly, and provides novel evidence on the crucial function of PXR in liver enlargement and regeneration.


Assuntos
Hepatomegalia/metabolismo , Receptor de Pregnano X/metabolismo , Animais , Relação Dose-Resposta a Droga , Hepatomegalia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona , Estrutura Molecular , Relação Estrutura-Atividade
13.
PLoS Genet ; 17(12): e1009980, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941873

RESUMO

The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction.


Assuntos
Amônia-Liases/genética , Glutamato Formimidoiltransferase/genética , Hepatomegalia/genética , Fígado/metabolismo , Enzimas Multifuncionais/genética , Proteína S6 Ribossômica/genética , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Humanos , Fígado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Mutação/genética , Fosforilação , Transdução de Sinais/genética , Inanição/genética , Inanição/metabolismo , Inanição/patologia , Peixe-Zebra/genética
14.
Clin Transl Med ; 11(6): e417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185433

RESUMO

Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.


Assuntos
Aciltransferases/fisiologia , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Queimaduras/complicações , Metabolismo Energético , Hepatomegalia/prevenção & controle , Lipólise , Adipócitos Bege/patologia , Tecido Adiposo Branco/patologia , Animais , Hepatomegalia/etiologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Phytomedicine ; 84: 153520, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662920

RESUMO

BACKGROUND: Schisandrol B (SolB) is one of the bioactive components from a traditional Chinese medicine Schisandra chinensis or Schisandra sphenanthera. It has been demonstrated that SolB exerts hepatoprotective effects against drug-induced liver injury and promotes liver regeneration. It was found that SolB can induce hepatomegaly but the involved mechanisms remain unknown. PURPOSE: This study aimed to explore the mechanisms involved in SolB-induced hepatomegaly. METHODS: Male C57BL/6 mice were injected intraperitoneally with SolB (100 mg/kg) for 5 days. Serum and liver samples were collected for biochemical and histological analyses. The mechanisms of SolB were investigated by qRT-PCR and western blot analyses, luciferase reporter gene assays and immunofluorescence. RESULTS: SolB significantly increased hepatocyte size and proliferation, and then promoted liver enlargement without liver injury and inflammation. SolB transactivated human PXR, activated PXR in mice and upregulated hepatic expression of its downstream proteins, such as CYP3A11, CYP2B10 and UGT1A1. SolB also significantly enhanced nuclear translocation of PXR and YAP in human cell lines. YAP signal pathway was activated by SolB in mice. CONCLUSION: These findings demonstrated that SolB can significantly induce liver enlargement, which is associated with the activation of PXR and YAP pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclo-Octanos/toxicidade , Dioxóis/toxicidade , Hepatomegalia/induzido quimicamente , Lignanas/toxicidade , Receptor de Pregnano X/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Receptor de Pregnano X/genética , Schisandra/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
16.
J Inherit Metab Dis ; 44(3): 521-533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368379

RESUMO

Glycogen storage disorder type III (GSDIII) is a rare inborn error of metabolism due to loss of glycogen debranching enzyme activity, causing inability to fully mobilize glycogen stores and its consequent accumulation in various tissues, notably liver, cardiac and skeletal muscle. In the pediatric population, it classically presents as hepatomegaly with or without ketotic hypoglycemia and failure to thrive. In the adult population, it should also be considered in the differential diagnosis of left ventricular hypertrophy or hypertrophic cardiomyopathy, myopathy, exercise intolerance, as well as liver cirrhosis or fibrosis with subsequent liver failure. In this review article, we first present an overview of the biochemical and clinical aspects of GSDIII. We then focus on the recent findings regarding cardiac and neuromuscular impairment associated with the disease. We review new insights into the pathophysiology and clinical picture of this disorder, including symptomatology, imaging and electrophysiology. Finally, we discuss current and upcoming treatment strategies such as gene therapy aimed at the replacement of the malfunctioning enzyme to provide a stable and long-term therapeutic option for this debilitating disease.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo III/terapia , Músculo Esquelético/fisiopatologia , Adulto , Animais , Criança , Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo III/metabolismo , Doença de Depósito de Glicogênio Tipo III/fisiopatologia , Hepatomegalia/metabolismo , Humanos , Hipoglicemia/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo
17.
Int J Exp Pathol ; 101(5): 171-182, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32869427

RESUMO

A feared adverse effect of dyslipidaemia therapy by fibrates is myopathy. We examined the effect of fenofibrate (FF) on protein and amino acid metabolism. Rats received a low (50 mg/kg, LFFD) or high (300 mg/kg, HFFD) dose of FF or vehicle daily by oral gavage. Blood plasma, liver, and soleus and extensor digitorum longus muscles were analysed after 10 days. The FF-treated rats developed hepatomegaly associated with increased hepatic carnitine and ATP and AMP concentrations, decreased protein breakdown, and decreased concentrations of DNA and triglycerides. HFFD increased plasma ALT and AST activities. The weight and protein content of muscles in the HFFD group were lower compared with controls. In muscles of the LFFD group there were increased ATP and decreased AMP concentrations; in the HFFD group AMP was increased. In both FF-treated groups there were increased glycine, phenylalanine, and citrulline and decreased arginine and branched-chain keto acids (BCKA) in blood plasma. After HFFD there were decreased levels of branched-chain amino acids (BCAA; valine, leucine and isoleucine), methionine, and lysine and increased homocysteine. Decreased arginine and increased glycine concentrations were found in both muscles in FF-treated animals; in HFFD-treated animals lysine, methionine, and BCAA were decreased. We conclude that FF exerts protein-anabolic effects on the liver and catabolic effects on muscles. HFFD causes signs of hepatotoxicity, impairs energy and protein balance in muscles, and decreases BCAA, methionine, and lysine. It is suggested that increased glycine and decreased lysine and methionine levels are due to activated carnitine synthesis; decreased BCAA and BCKA levels are due to increased BCAA oxidation.


Assuntos
Aminoácidos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fenofibrato/administração & dosagem , Hipolipemiantes/administração & dosagem , Proteínas/metabolismo , Aminoácidos/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/sangue , Animais , Carnitina/sangue , Glicina/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Humanos , Leucina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisina/metabolismo , Masculino , Metionina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução , Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Arch Biochem Biophys ; 691: 108486, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32710880

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. Because hepatic steatosis is an early pathogenesis of NAFLD, the discovery of food components that could ameliorate hepatic steatosis is of interest. Susabinori (Pyropia yezoensis) is recognized as one of the most delicious edible brown algae, and we prepared lipid component of susabinori (SNL), which is rich in eicosapentaenoic acid (EPA)-containing polar lipids. In this study, we tested whether feeding SNL to db/db mice protects them from developing obesity-induced hepatic steatosis. After four weeks of feeding, hepatomegaly, hepatic steatosis, and hepatic injury were markedly alleviated in SNL-fed db/db mice. These effects were partly attributable to the suppression of activities and mRNA expressions of lipogenic enzymes and enhanced levels of adiponectin due to the SNL diet. Additionally, mRNA expression of monocyte chemoattractant protein-1, an inflammatory chemokine, was markedly suppressed, and the mRNA levels of PPARδ, the anti-inflammatory transcription factor, were strongly enhanced in the livers of db/db mice by the SNL diet. We speculate that the development and progression of obesity-induced hepatic steatosis was prevented by the suppression of chronic inflammation due to the combination of bioactivities of EPA, phospholipids, and glycolipids in the SNL diet.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Extratos Vegetais/farmacologia , Alga Marinha/química , Animais , Quimiocina CCL2/metabolismo , Glicolipídeos/farmacologia , Hepatomegalia/metabolismo , Hepatomegalia/prevenção & controle , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR delta/metabolismo , Fosfolipídeos/farmacologia , RNA Mensageiro/metabolismo , Rodófitas/química
19.
J Hepatol ; 72(6): 1182-1195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32105670

RESUMO

BACKGROUND & AIMS: Hepatomegaly can be triggered by insulin and insulin-unrelated etiologies. Insulin acts via AKT, but how other challenges cause hepatomegaly is unknown. METHODS: Since many hepatomegaly-inducing toxicants and stressors activate NRF2, we examined the effect of NRF2 activation on liver size and metabolism using a conditional allele encoding a constitutively active NRF2 variant to generate Nrf2Act-hep mice in which NRF2 is selectively activated in hepatocytes. We also used adenoviruses encoding variants of the autophagy adaptor p62/SQSTM1, which activates liver NRF2, as well as liver-specific ATG7-deficient mice (Atg7Δhep) and liver specimens from patients with hepatic sinusoidal obstruction syndrome (HSOS) and autoimmune hepatitis (AIH). RNA sequencing and cell signaling analyses were used to determine cellular consequences of NRF2 activation and diverse histological analyses were used to study effects of the different manipulations on liver and systemic pathophysiology. RESULTS: Hepatocyte-specific NRF2 activation, due to p62 accumulation or inhibition of KEAP1 binding, led to hepatomegaly associated with enhanced glycogenosis, steatosis and G2/M cell cycle arrest, fostering hyperplasia without cell division. Surprisingly, all manipulations that led to NRF2 activation also activated AKT, whose inhibition blocked NRF2-induced hepatomegaly and glycogenosis, but not NRF2-dependent antioxidant gene induction. AKT activation was linked to NRF2-mediated transcriptional induction of PDGF and EGF receptor ligands that signaled through their cognate receptors in an autocrine manner. Insulin and insulin-like growth factors were not involved. The NRF2-AKT signaling axis was also activated in human HSOS- and AIH-related hepatomegaly. CONCLUSIONS: NRF2, a transcription factor readily activated by xenobiotics, oxidative stress and autophagy disruptors, may be a common mediator of hepatomegaly; its effects on hepatic metabolism can be reversed by AKT/tyrosine kinase inhibitors. LAY SUMMARY: Hepatomegaly can be triggered by numerous etiological factors, including infections, liver cancer, metabolic disturbances, toxicant exposure, as well as alcohol abuse or drug-induced hepatitis. This study identified the oxidative stress response transcription factor NRF2 as a common mediator of hepatomegaly. NRF2 activation results in elevated expression of several growth factors. These growth factors are made by hepatocytes and activate their receptors in an autocrine fashion to stimulate the accumulation of glycogen and lipids that lead to hepatocyte and liver enlargement. The protein kinase AKT plays a key role in this process and its inhibition leads to reversal of hepatomegaly.


Assuntos
Receptores ErbB/metabolismo , Genes erbB-1 , Hepatopatia Veno-Oclusiva/complicações , Hepatopatia Veno-Oclusiva/metabolismo , Hepatite Autoimune/complicações , Hepatite Autoimune/metabolismo , Hepatomegalia/complicações , Hepatomegalia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto , Animais , Autofagia/genética , Modelos Animais de Doenças , Receptores ErbB/genética , Feminino , Hemangioma/metabolismo , Hemangioma/patologia , Hepatopatia Veno-Oclusiva/patologia , Hepatite Autoimune/patologia , Hepatomegalia/genética , Hepatomegalia/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/genética
20.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G410-G418, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905026

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are common causes of chronic liver disease. The overlap between ALD and NAFLD suggests the existence of metabolic steatohepatitis. Development of in vivo models that reflect various aspects of human steatohepatitis is essential for drug discovery. We aimed to characterize several models of steatohepatitis (SH) and to investigate whether the pathology could be modulated. Sprague-Dawley rats were fed a high-fat diet (HFD) for 9 wk, followed by either a high-fat, high-cholesterol and cholate diet (HFC) or a HFC diet containing 13% trans fat (HFC-TF). A subset received 15% ethanol-water twice a week for 12 wk. Serum triglycerides, cholesterol, LDL, HDL, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and rodent NH2-terminal propeptide of type III collagen (rPRO-C3) were assessed. The liver was weighed and evaluated using modified Nonalcoholic Steatohepatitis Clinical Research Network histological score system criteria. All diets induced hepatomegaly, but only HFC-TF increased the size of visceral adipose tissue. Trans fat augmented HFC-induced dyslipidemia, and cholesterol was higher and HDL was lower in the HFC-TF groups. Alcohol lowered triglycerides in both dietary groups. HFC elevated ALT and AST, which were lowered by trans fat. All diets induced histological SH, addition of trans fat induced more steatosis but less inflammation. Inclusion of alcohol augmented the HFC-induced inflammation. All diets induced mild fibrosis. Inclusion of trans fat and alcohol significantly increased rPRO-C3. The addition of trans fat reduced the HFC-induced inflammation but augmented steatosis and dyslipidemia. Inclusion of alcohol induced a more inflammatory and fibrogenic phenotype.NEW & NOTEWORTHY Alcoholic liver disease and nonalcoholic liver disease share significant overlap, which suggests the existence of metabolic steatohepatitis. Trans fat has been implicated in steatohepatitis development. Here, we show that the addition of trans fat to an atherogenic diet results in a more steatotic but less inflammatory phenotype, whereas the addition of alcohol to an atherogenic diet augments the inflammatory and fibrogenic properties of the diet.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Dieta Aterogênica , Fígado Gorduroso Alcoólico/etiologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Ácidos Graxos trans , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Modelos Animais de Doenças , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/patologia , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Hepatomegalia/etiologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Cirrose Hepática Alcoólica/etiologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA