Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 298(3): 101625, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074430

RESUMO

Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, ß-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in ß- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.


Assuntos
Herpesvirus Humano 3 , Membrana Nuclear , Proteínas Virais , Cristalografia por Raios X , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Proteínas Virais/química , Proteínas Virais/genética , Liberação de Vírus
2.
Nat Microbiol ; 5(12): 1542-1552, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32895526

RESUMO

Varicella-zoster virus (VZV) is a medically important human herpesvirus that causes chickenpox and shingles, but its cell-associated nature has hindered structure studies. Here we report the cryo-electron microscopy structures of purified VZV A-capsid and C-capsid, as well as of the DNA-containing capsid inside the virion. Atomic models derived from these structures show that, despite enclosing a genome that is substantially smaller than those of other human herpesviruses, VZV has a similarly sized capsid, consisting of 955 major capsid protein (MCP), 900 small capsid protein (SCP), 640 triplex dimer (Tri2) and 320 triplex monomer (Tri1) subunits. The VZV capsid has high thermal stability, although with relatively fewer intra- and inter-capsid protein interactions and less stably associated tegument proteins compared with other human herpesviruses. Analysis with antibodies targeting the N and C termini of the VZV SCP indicates that the hexon-capping SCP-the largest among human herpesviruses-uses its N-terminal half to bridge hexon MCP subunits and possesses a C-terminal flexible half emanating from the inner rim of the upper hexon channel into the tegument layer. Correlation of these structural features and functional observations provide insights into VZV assembly and pathogenesis and should help efforts to engineer gene delivery and anticancer vectors based on the currently available VZV vaccine.


Assuntos
Capsídeo/ultraestrutura , Herpesvirus Humano 3/ultraestrutura , Infecção pelo Vírus da Varicela-Zoster/virologia , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesvirus Humano 3/química , Herpesvirus Humano 3/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Vírion/metabolismo , Vírion/ultraestrutura
3.
Nat Commun ; 11(1): 4141, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811830

RESUMO

Members of the Herpesviridae, including the medically important alphaherpesvirus varicella-zoster virus (VZV), induce fusion of the virion envelope with cell membranes during entry, and between cells to form polykaryocytes in infected tissues. The conserved glycoproteins, gB, gH and gL, are the core functional proteins of the herpesvirus fusion complex. gB serves as the primary fusogen via its fusion loops, but functions for the remaining gB domains remain unexplained. As a pathway for biological discovery of domain function, our approach used structure-based analysis of the viral fusogen together with a neutralizing antibody. We report here a 2.8 Å cryogenic-electron microscopy structure of native gB recovered from VZV-infected cells, in complex with a human monoclonal antibody, 93k. This high-resolution structure guided targeted mutagenesis at the gB-93k interface, providing compelling evidence that a domain spatially distant from the gB fusion loops is critical for herpesvirus fusion, revealing a potential new target for antiviral therapies.


Assuntos
Anticorpos Neutralizantes/química , Herpesvirus Humano 3/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Microscopia Crioeletrônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/ultraestrutura
4.
J Infect Dis ; 212 Suppl 1: S37-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116729

RESUMO

Giant cell arteritis (GCA) is an immune-mediated disease of unknown etiology. Varicella zoster virus (VZV) antigen was found in all of 4 GCA-positive temporal arteries (TAs) but was not present in any of 13 normal TAs. All 4 GCA-positive TAs contained viral antigen in skip areas, mostly in the adventitia and media and least in the intima. Despite formalin fixation, VZV DNA was detected in 2 of 4 GCA-positive, VZV antigen-positive TAs. Skeletal muscle was attached to 3 of 4 TAs, and VZV antigen was found in 2 and VZV DNA in 1. VZV may cause GCA.


Assuntos
Arterite de Células Gigantes/virologia , Herpesvirus Humano 3/química , Artérias Temporais/virologia , Anticorpos Antivirais/análise , Antígenos Virais/análise , Arterite de Células Gigantes/imunologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/isolamento & purificação , Histocitoquímica , Humanos , Pessoa de Meia-Idade , Artérias Temporais/química , Artérias Temporais/patologia
5.
J Biol Chem ; 290(32): 19833-43, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26105052

RESUMO

Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.


Assuntos
Células Epiteliais/metabolismo , Herpesvirus Humano 3/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Neuroglia/metabolismo , Polissacarídeos/química , Ácidos Siálicos/química , Proteínas do Envelope Viral/química , Linhagem Celular Tumoral , Células Epiteliais/patologia , Células Epiteliais/virologia , Glicosilação , Células HEK293 , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Interações Hospedeiro-Patógeno , Humanos , Fusão de Membrana , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/genética , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/metabolismo , Neuroglia/patologia , Neuroglia/virologia , Mutação Puntual , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
6.
Nanoscale ; 7(10): 4545-52, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25686406

RESUMO

Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.


Assuntos
Herpesvirus Humano 3/química , Análise Espectral Raman/métodos , Teschovirus/química , Animais , Humanos , Suínos
7.
BMC Bioinformatics ; 14 Suppl 14: S8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266981

RESUMO

The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and infection.


Assuntos
Algoritmos , Herpesvirus Humano 3/química , Herpesvirus Humano 8/química , Proteínas Virais/química , Herpesvirus Humano 3/genética , Herpesvirus Humano 8/genética , Fases de Leitura Aberta , Proteínas Virais/genética
8.
J Virol ; 86(1): 578-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013055

RESUMO

Analyses of varicella-zoster virus (VZV) protein expression during latency have been discordant, with rare to many positive neurons detected. We show that ascites-derived murine and rabbit antibodies specific for VZV proteins in vitro contain endogenous antibodies that react with human blood type A antigens in neurons. Apparent VZV neuronal staining and blood type A were strongly associated (by a χ² test, α = 0.0003). Adsorption of ascites-derived monoclonal antibodies or antiserum with type A erythrocytes or the use of in vitro-derived VZV monoclonal antibodies eliminated apparent VZV staining. Animal-derived antibodies must be screened for anti-blood type A reactivity to avoid misidentification of viral proteins in the neurons of the 30 to 40% of individuals who are blood type A.


Assuntos
Sistema ABO de Grupos Sanguíneos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Células Receptoras Sensoriais/virologia , Proteínas Virais/genética , Latência Viral , Animais , Anticorpos/análise , Anticorpos Antivirais/análise , Reações Cruzadas , Regulação Viral da Expressão Gênica , Herpes Zoster/imunologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Humanos , Imuno-Histoquímica , Camundongos , Coelhos , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/imunologia , Proteínas Virais/análise , Proteínas Virais/imunologia
9.
J Virol ; 86(2): 1193-202, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090112

RESUMO

Dendritic cells (DC) are antigen-presenting cells essential for initiating primary immune responses and therefore an ideal target for viral immune evasion. Varicella-zoster virus (VZV) can productively infect immature human DCs and impair their function as immune effectors by inhibiting their maturation, as evidenced by the expression modulation of functionally important cell surface immune molecules CD80, CD86, CD83, and major histocompatibility complex I. The NF-κB pathway largely regulates the expression of these immune molecules, and therefore we sought to determine whether VZV infection of DCs modulates the NF-κB pathway. Nuclear localization of NF-κB p50 and p65 indicates pathway activation; however, immunofluorescence studies revealed cytoplasmic retention of these NF-κB subunits in VZV-infected DCs. Western blotting revealed phosphorylation of the inhibitor of κBα (IκBα) in VZV-infected DCs, indicating that the pathway is active at this point. We conclude that VZV infection of DC inhibits the NF-κB pathway following protein phosphorylation but before the translocation of NF-κB subunits into the nucleus. An NF-κB reporter assay identified VZV open reading frame 61 (ORF61) as an inhibitor of tumor necrosis factor alpha-induced NF-κB reporter activity. Mutational analysis of ORF61 identified the E3 ubiquitin ligase domain as a region required for NF-κB pathway inhibition. In summary, we provide evidence that VZV inhibits the NF-κB signaling pathway in human DCs and that the E3 ubiquitin ligase domain of ORF61 is required to modulate this pathway. Thus, this work identifies a mechanism by which VZV modulates host immune function.


Assuntos
Células Dendríticas/metabolismo , Regulação para Baixo , Herpes Zoster/metabolismo , Herpesvirus Humano 3/metabolismo , NF-kappa B/metabolismo , Fases de Leitura Aberta , Transdução de Sinais , Proteínas Virais/metabolismo , Linhagem Celular , Células Dendríticas/virologia , Herpes Zoster/genética , Herpes Zoster/virologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Estrutura Terciária de Proteína , Transporte Proteico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
10.
J Virol ; 86(5): 2641-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190713

RESUMO

Varicella zoster virus (VZV) is usually associated with mild to moderate illness in immunocompetent patients. However, older age and immune deficiency are the most important risk factors linked with virus reactivation and severe complications. Treatment of VZV infections is based on nucleoside analogues, such as acyclovir (ACV) and its valyl prodrug valacyclovir, penciclovir (PCV) as its prodrug famciclovir, and bromovinyldeoxyuridine (BVDU; brivudin) in some areas. The use of the pyrophosphate analogue foscarnet (PFA) is restricted to ACV-resistant (ACV(r)) VZV infections. Since antiviral drug resistance is an emerging problem, we attempt to describe the contributions of specific mutations in the viral thymidine kinase (TK) gene identified following selection with ACV, BVDU and its derivative BVaraU (sorivudine), and the bicyclic pyrimidine nucleoside analogues (BCNAs), a new class of potent and specific anti-VZV agents. The string of 6 Cs at nucleotides 493 to 498 of the VZV TK gene appeared to function as a hot spot for nucleotide insertions or deletions. Novel amino acid substitutions (G24R and T86A) in VZV TK were also linked to drug resistance. Six mutations were identified in the "palm domain" of VZV DNA polymerase in viruses selected for resistance to PFA, PCV, and the 2-phophonylmethoxyethyl (PME) purine derivatives. The investigation of the contributions of specific mutations in VZV TK or DNA polymerase to antiviral drug resistance and their impacts on the structures of the viral proteins indicated specific patterns of cross-resistance and highlighted important differences, not only between distinct classes of antivirals, but also between ACV and PCV.


Assuntos
Antivirais/farmacologia , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral , Herpesvirus Humano 3/enzimologia , Mutação/efeitos dos fármacos , Nucleosídeos/farmacologia , Timidina Quinase/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Linhagem Celular , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Genótipo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/efeitos dos fármacos , Herpesvirus Humano 3/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Timidina Quinase/química , Timidina Quinase/metabolismo , Proteínas Virais/metabolismo
11.
Haematologica ; 97(6): 874-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22207687

RESUMO

BACKGROUND: After allogeneic hematopoietic stem-cell transplantation patients are at increased risk for herpes zoster as long as varicella-zoster virus specific T-cell reconstitution is impaired. This study aimed to identify immunodominant varicella-zoster virus antigens that drive recovery of virus-specific T cells after transplantation. DESIGN AND METHODS: Antigens were purified from a varicella-zoster virus infected cell lysate by high-performance liquid chromatography and were identified by quantitative mass spectrometric analysis. To approximate in vivo immunogenicity for memory T cells, antigen preparations were consistently screened with ex vivo PBMC of varicella-zoster virus immune healthy individuals in sensitive interferon-γ ELISpot assays. Candidate virus antigens identified by the approach were genetically expressed in PBMC using electroporation of in vitro transcribed RNA encoding full-length proteins and were then analyzed for recognition by CD4(+) and CD8(+) memory T cells. RESULTS: Varicella-zoster virus encoded glycoproteins B and E, and immediate early protein 62 were identified in immunoreactive lysate material. Predominant CD4(+) T-cell reactivity to these proteins was observed in healthy virus carriers. Furthermore, longitudinal screening in allogeneic stem-cell transplantation patients showed strong expansions of memory T cells recognizing glycoproteins B and E after onset of herpes zoster, while immediate early protein 62 reactivity remained moderate. Reactivity to viral glycoproteins boosted by acute zoster was mediated by both CD4(+) and CD8(+) T cells. CONCLUSIONS: Our data demonstrate that glycoproteins B and E are major targets of varicella-zoster virus specific CD4(+) and CD8(+) T-cell reconstitution occurring during herpes zoster after allogeneic stem-cell transplantation. Varicella-zoster virus glycoproteins B and E might form the basis for novel non-hazardous zoster subunit vaccines suitable for immunocompromised transplant patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 3/imunologia , Condicionamento Pré-Transplante/métodos , Proteínas do Envelope Viral/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Eletroporação , Feminino , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/química , Humanos , Masculino , Plasmídeos , Espectrometria de Massas por Ionização por Electrospray , Transfecção , Transplante Homólogo , Proteínas do Envelope Viral/química
12.
J Proteome Res ; 10(12): 5374-82, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21988664

RESUMO

Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay. A set of 20 interactions was consistently detected by at least 2 methods and resulted in a dense interaction network between proteins associated in encapsidation and nuclear egress. The results indicate that the terminase complex in VZV consists of ORF25, ORF30, and ORF45/42 and support a model in which both processes are closely linked to each other. Consistent with its role as a central hub for protein interactions, ORF25 is shown to be essential for VZV replication.


Assuntos
Genes Virais , Herpesvirus Humano 3/química , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/química , Animais , Sequência de Bases , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Capsídeo/química , Núcleo Celular/química , Clonagem Molecular/métodos , Cosmídeos/química , Cosmídeos/genética , DNA Viral/química , DNA Viral/genética , Escherichia coli/química , Escherichia coli/metabolismo , Deleção de Genes , Células HeLa , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Soros Imunes/química , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Coelhos , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Replicação Viral
13.
J Virol ; 84(7): 3488-502, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106918

RESUMO

The ORF50 gene of the varicella-zoster virus (VZV) encodes glycoprotein M (gM), which is conserved among all herpesviruses and is important for the cell-to-cell spread of VZV. However, few analyses of ORF50 gene expression or its posttranscriptional and translational modifications have been published. Here we found that in VZV-infected cells, ORF50 encoded four transcripts: a full-size transcript, which was translated into the gM, and three alternatively spliced transcripts, which were not translated. Using a splicing-negative mutant virus, we showed that the alternative transcripts were nonessential for viral growth in cell culture. In addition, we found that two amino acid mutations of gM, V42P and G301M, blocked gM's maturation and transport to the trans-Golgi network, which is generally recognized as the viral assembly complex. We also found that the mutations disrupted gM's interaction with glycoprotein N (gN), revealing their interaction through a bond that is otherwise unreported for herpesviruses. Using this gM maturation-negative virus, we found that immature gM and gN were incorporated into intracellularly isolated virus particles and that mature gM was required for efficient viral growth via cell-to-cell spread but not for virion morphogenesis. The virus particles were more abundant at the abnormally enlarged perinuclear cisternae than those of the parental virus, but they were also found at the cell surface and in the culture medium. Additionally, in the gM maturation-negative mutant virus-infected melanoma cells, typical syncytium formation was rarely seen, again indicating that mature gM functions in cell-to-cell spread via enhancement of syncytium formation.


Assuntos
Herpesvirus Humano 3/genética , Proteínas do Envelope Viral/genética , Processamento Alternativo , Northern Blotting , Linhagem Celular , Células Gigantes/fisiologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Transporte Proteico , RNA Mensageiro/análise , Proteínas do Envelope Viral/fisiologia
14.
J Virol ; 84(7): 3476-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106921

RESUMO

Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is an E3 ubiquitin ligase of the RING finger class that is required for efficient lytic infection and reactivation from latency. Other alphaherpesviruses also express ICP0-related RING finger proteins, but these have limited homology outside the core RING domain. Existing evidence indicates that ICP0 family members have similar properties, but there has been no systematic comparison of the biochemical activities and biological functions of these proteins. Here, we describe an inducible cell line system that allows expression of the ICP0-related proteins of bovine herpes virus type 1 (BHV-1), equine herpesvirus type 1 (EHV-1), pseudorabies virus (PRV), and varicella-zoster virus (VZV) and their subsequent functional analysis. We report that the RING domains of all the proteins have E3 ubiquitin ligase activity in vitro. The BHV-1, EHV-1, and PRV proteins complement ICP0-null mutant HSV-1 plaque formation and induce derepression of quiescent HSV-1 genomes to levels similar to those achieved by ICP0 itself. VICP0, the ICP0 expressed by VZV, was found to be extremely unstable, which limited its analysis in this system. We compared the abilities of the ICP0-related proteins to disrupt ND10, to induce degradation of PML and Sp100, to affect key components of the interferon signaling pathway, and to interfere with induction of interferon-stimulated genes. We found that the property that correlated most closely with their biological activities was the ability to preclude the recruitment of cellular ND10 proteins to sites closely associated with incoming HSV-1 genomes and early replication compartments.


Assuntos
Herpesvirus Bovino 1/química , Herpesvirus Suídeo 1/química , Herpesvirus Humano 3/química , Proteínas Imediatamente Precoces/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Virais/fisiologia , Animais , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Linhagem Celular , Genoma Viral , Herpesvirus Humano 1/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Complexo de Endopeptidases do Proteassoma/fisiologia , Elementos de Resposta , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
J Virol ; 83(15): 7560-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19457996

RESUMO

Varicella-zoster virus (VZV) open reading frame 61 (ORF61) encodes a protein that transactivates viral and cellular promoters in transient-transfection assays and is the ortholog of herpes simplex virus ICP0. In this report, we mapped the ORF61 promoter and investigated its regulation by viral and cellular proteins in transient-expression experiments and by mutagenesis of the VZV genome (parent Oka strain). The 5' boundary of the minimal ORF61 promoter required for IE62 transactivation was mapped to position -95 relative to the mRNA start site, and three noncanonical GT-rich Sp1-binding sites were documented to occur within the region comprising positions -95 to -45. Contributions of the three Sp1-binding-site motifs, designated Sp1a, Sp1b, and Sp1c, to ORF61 expression and viral replication were varied despite their similar sequences. Two sites, Sp1a and Sp1c, functioned synergistically. When both sites were mutated in the pOka genome to produce pOka-61proDeltaSp1ac, the mutant virus expressed significantly less ORF61 protein. Using this mutant to investigate ORF61 functions resulted in reductions in the expression levels of IE proteins, viral kinases ORF47 and ORF66, and the major glycoprotein gE, with the most impact on gE. Virion morphogenesis appeared to be intact despite minimal ORF61 expression. Pretreating melanoma cells with sodium butyrate enhanced titers of pOka-61proDeltaSp1ac but not pOka, suggesting that ORF61 has a role in histone deacetylase inhibition. Growth of pOka-61proDeltaSp1ac was impaired in SCIDhu skin xenografts, indicating that the regulation of the ORF61 promoter by Sp1 family proteins is important for ORF61 expression in vivo and that ORF61 contributes to VZV virulence at skin sites of replication.


Assuntos
Varicela/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Regiões Promotoras Genéticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Animais , Sítios de Ligação , Varicela/metabolismo , Modelos Animais de Doenças , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Camundongos , Camundongos SCID , Pele/metabolismo , Pele/virologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional , Proteínas Virais/química
16.
J Virol ; 83(15): 7495-506, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474103

RESUMO

Glycoprotein B (gB), the most conserved protein in the family Herpesviridae, is essential for the fusion of viral and cellular membranes. Information about varicella-zoster virus (VZV) gB is limited, but homology modeling showed that the structure of VZV gB was similar to that of herpes simplex virus (HSV) gB, including the putative fusion loops. In contrast to HSV gB, VZV gB had a furin recognition motif ([R]-X-[KR]-R-|-X, where | indicates the position at which the polypeptide is cleaved) at residues 491 to 494, thought to be required for gB cleavage into two polypeptides. To investigate their contribution, the putative primary fusion loop or the furin recognition motif was mutated in expression constructs and in the context of the VZV genome. Substitutions in the primary loop, W180G and Y185G, plus the deletion mutation Delta491RSRR494 and point mutation 491GSGG494 in the furin recognition motif did not affect gB expression or cellular localization in transfected cells. Infectious VZV was recovered from parental Oka (pOka)-bacterial artificial chromosomes that had either the Delta491RSRR494 or 491GSGG494 mutation but not the point mutations W180G and Y185G, demonstrating that residues in the primary loop of gB were essential but gB cleavage was not required for VZV replication in vitro. Virion morphology, protein localization, plaque size, and replication were unaffected for the pOka-gBDelta491RSRR494 or pOka-gB491GSGG494 virus compared to pOka in vitro. However, deletion of the furin recognition motif caused attenuation of VZV replication in human skin xenografts in vivo. This is the first evidence that cleavage of a herpesvirus fusion protein contributes to viral pathogenesis in vivo, as seen for fusion proteins in other virus families.


Assuntos
Varicela/virologia , Furina/metabolismo , Herpesvirus Humano 3/patogenicidade , Mutagênese , Pele/virologia , Proteínas do Envelope Viral/genética , Replicação Viral , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Varicela/metabolismo , Varicela/patologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Mutação , Ligação Proteica , Alinhamento de Sequência , Pele/metabolismo , Pele/patologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
17.
J Virol ; 83(9): 4262-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211749

RESUMO

PML, Sp100, and Daxx are proteins that normally reside within nuclear domains 10 (ND10s). They associate with DNA virus genomes and repress the very early stages of the DNA virus replication cycle. Virus-encoded proteins counteract this innate antiviral response. ICP0, a herpes simplex virus (HSV) immediate-early protein, is necessary and sufficient to dissociate ND10s and target their two major components, PML and Sp100, for proteasomal degradation. In this report, we show that ORF61p, the varicella-zoster virus (VZV) ortholog of ICP0, does not degrade PML and alters Sp100 levels only slightly. Furthermore, we demonstrate that other virus proteins cannot substitute for this lack of function during infection. By using short interfering RNAs, we depleted PML, Sp100, and Daxx and studied their roles in plaquing efficiency, virus protein accumulation, infectious-center titer, and virus spread. The results of these studies show that components of ND10s can accelerate VZV replication but do not ultimately control cell-associated virus titers. We conclude that while both ICP0 and ORF61p activate virus gene expression, they modulate host innate repression mechanisms in two different ways. As a result, HSV and VZV commandeer their host cells by distinct mechanisms to ensure their replication and spread.


Assuntos
Núcleo Celular/metabolismo , Núcleo Celular/virologia , Herpesvirus Humano 3/metabolismo , Replicação Viral , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Regulação da Expressão Gênica , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
J Med Chem ; 51(24): 7744-50, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19053744

RESUMO

Here, we present the synthesis of five novel indoloquinoxaline derivatives and investigate the DNA binding properties of these monomeric as well as dimeric compounds using absorption, fluorescence, and linear dichroism. Several of the mono- and dicationic derivatives presented have previously demonstrated an excellent antiviral effect that is higher than already acknowledged agents against human cytomegalovirus (CMV), herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV). We find that the DNA binding constants of the monomeric and dimeric derivatives are high (approximately 10(6)) and very high (approximately 10(9)), respectively. Results from the spectroscopic measurements show that the planar aromatic indoloquinoxaline moieties upon interaction with DNA intercalate between the nucleobases. Furthermore, we use poly(dA-dT)(2) and calf thymus DNA in a competitive binding experiment to show that all our derivatives have an AT-region preference. The findings are important in the understanding of the antiviral effect of these derivatives and give invaluable information for the future optimization of the DNA binding properties of this kind of drugs.


Assuntos
Antivirais/farmacologia , DNA/química , Quinoxalinas/química , Animais , Bovinos , Química Farmacêutica/métodos , Citomegalovirus/genética , Dimerização , Desenho de Fármacos , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 3/química , Humanos , Modelos Químicos , Espectrometria de Fluorescência/métodos
19.
Virology ; 377(2): 289-95, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18570967

RESUMO

Varicella-zoster virus (VZV) encodes five genes that do not have herpes simplex virus homologs. One of these genes, VZV open reading frame 1 (ORF1), encodes a membrane protein with a hydrophobic domain at its C-terminus that is predicted to be the transmembrane domain. However, the detailed characterization of ORF1 protein in infected cells has not been reported. Here, we produced mono-specific antibodies against ORF1 protein and characterized the gene products in infected cells. Western blot analyses showed the ORF1 polypeptides had apparent molecular masses of approximately 14-17 kDa. Furthermore, ORF1 was found to be a phosphoprotein by immunoprecipitation assay. In immunofluorescence assays, the VZV ORF1 protein was detected at both the plasma membrane and trans-Golgi network in both VZV-infected and ORF1-transfected cells. Moreover, ORF1 proteins associated with each other to form homodimer, and were incorporated into viral particles. The C-terminal hydrophobic domain was required for the association of ORF1 with the membrane structures, indicating that ORF1 protein is anchored to the membrane thorough its C-terminus, which is a transmembrane domain. Because ORF1 possesses a C-terminal transmembrane domain without an N-terminal signal sequence for its translocation to the ER lumen, ORF1 can be classified as a tail-anchored membrane protein. These results show that the N terminus of ORF1 protein faces the cytoplasm in infected cells and the tegument region in mature virions.


Assuntos
Membrana Celular/metabolismo , Herpesvirus Humano 3/química , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Rede trans-Golgi/metabolismo , Animais , Anticorpos Monoclonais , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Proteínas de Membrana/genética , Fases de Leitura Aberta , Células Tumorais Cultivadas , Proteínas Virais/biossíntese , Proteínas Virais/genética
20.
J Virol ; 82(2): 795-804, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17977964

RESUMO

Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth.


Assuntos
Glicoproteínas/química , Glicoproteínas/fisiologia , Herpesvirus Humano 3/química , Herpesvirus Humano 3/fisiologia , Proteínas Virais/química , Proteínas Virais/fisiologia , Linhagem Celular , Citoplasma/ultraestrutura , Deleção de Genes , Glicoproteínas/análise , Glicoproteínas/genética , Glicosilação , Complexo de Golgi/química , Herpesvirus Humano 3/genética , Humanos , Microscopia Eletrônica de Transmissão , Vacúolos/ultraestrutura , Ensaio de Placa Viral , Proteínas Virais/análise , Proteínas Virais/genética , Vírion/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA