Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Virol ; 97(11): e0138923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888983

RESUMO

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.


Assuntos
Herpesvirus Humano 8 , Interações entre Hospedeiro e Microrganismos , Proteínas Imediatamente Precoces , Ubiquitina-Proteína Ligases , Proteínas Virais , Ativação Viral , Latência Viral , Replicação Viral , Humanos , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Ligação Proteica , Proteômica , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo
2.
J Virol ; 95(13): e0009621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853955

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic human gammaherpesvirus and the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). During reactivation, viral genes are expressed in a temporal manner. These lytic genes encode transactivators, core replication proteins, or structural proteins. During reactivation, other viral factors that are required for lytic replication are expressed. The most abundant viral transcript is the long noncoding RNA (lncRNA) known as polyadenylated nuclear (PAN) RNA. lncRNAs have diverse functions, including the regulation of gene expression and the immune response. PAN possesses two main cis-acting elements, the Mta response element (MRE) and the expression and nuclear retention element (ENE). While PAN has been demonstrated to be required for efficient viral replication, the function of these elements within PAN remains unclear. Our goal was to determine if the ENE of PAN is required in the context of infection. A KSHV bacmid containing a deletion of the 79-nucleotide (nt) ENE in PAN was generated to assess the effects of the ENE during viral replication. Our studies demonstrated that the ENE is not required for viral DNA synthesis, lytic gene expression, or the production of infectious virus. Although the ENE is not required for viral replication, we found that the ENE functions to retain PAN in the nucleus, and the absence of the ENE results in an increased accumulation of PAN in the cytoplasm. Furthermore, open reading frame 59 (ORF59), LANA, ORF57, H1.4, and H2A still retain the ability to bind to PAN in the absence of the ENE. Together, our data highlight how the ENE affects the nuclear retention of PAN but ultimately does not play an essential role during lytic replication. Our data suggest that PAN may have other functional domains apart from the ENE. IMPORTANCE KSHV is an oncogenic herpesvirus that establishes latency and exhibits episodes of reactivation. KSHV disease pathologies are most often associated with the lytic replication of the virus. PAN RNA is the most abundant viral transcript during the reactivation of KSHV and is required for viral replication. Deletion and knockdown of PAN resulted in defects in viral replication and reduced virion production in the absence of PAN RNA. To better understand how the cis elements within PAN may contribute to its function, we investigated if the ENE of PAN was necessary for viral replication. Although the ENE had previously been extensively studied with both biochemical and in vitro approaches, this is the first study to demonstrate the role of the ENE in the context of infection and that the ENE of PAN is not required for the lytic replication of KSHV.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/genética , RNA Longo não Codificante/genética , Ativação Viral/genética , Latência Viral/genética , Hiperplasia do Linfonodo Gigante/virologia , Linhagem Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/fisiologia , Humanos , RNA Mensageiro/genética , RNA Nuclear/genética , Sarcoma de Kaposi/virologia , Replicação Viral/genética
3.
Cell Rep ; 35(2): 108976, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852834

RESUMO

RIG-I-like receptors (RLRs) are involved in the discrimination of self versus non-self via the recognition of double-stranded RNA (dsRNA). Emerging evidence suggests that immunostimulatory dsRNAs are ubiquitously expressed but are disrupted or sequestered by cellular RNA binding proteins (RBPs). TDP-43 is an RBP associated with multiple neurological disorders and is essential for cell viability. Here, we demonstrate that TDP-43 regulates the accumulation of immunostimulatory dsRNA. The immunostimulatory RNA is identified as RNA polymerase III transcripts, including 7SL and Alu retrotransposons, and we demonstrate that the RNA-binding activity of TDP-43 is required to prevent immune stimulation. The dsRNAs activate a RIG-I-dependent interferon (IFN) response, which promotes necroptosis. Genetic inactivation of the RLR-pathway rescues the interferon-mediated cell death associated with loss of TDP-43. Collectively, our study describes a role for TDP-43 in preventing the accumulation of endogenous immunostimulatory dsRNAs and uncovers an intricate relationship between the control of cellular gene expression and IFN-mediated cell death.


Assuntos
Proteína DEAD-box 58/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 8/genética , Necroptose/genética , RNA de Cadeia Dupla/genética , Receptores Imunológicos/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Elementos Alu , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/genética , Citocinas/imunologia , Proteína DEAD-box 58/antagonistas & inibidores , Proteína DEAD-box 58/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/imunologia , Humanos , Imunização , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Necroptose/imunologia , Neurônios/imunologia , Neurônios/virologia , RNA Polimerase III/genética , RNA Polimerase III/imunologia , RNA de Cadeia Dupla/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/imunologia , RNA Viral/genética , RNA Viral/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Ubiquitinas/genética , Ubiquitinas/imunologia
4.
Rev. cuba. med. trop ; 73(1): e505, tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1280325

RESUMO

Introducción: El sarcoma de Kaposi es una neoplasia oportunista asociada a la inmunodepresión causada por VIH, que se relaciona con la infección por VHH tipo 8. Objetivo: Describir la presentación del sarcoma de Kaposi en personas que viven con VIH en Guinea Ecuatorial. Métodos: Se realizó un estudio descriptivo de carácter retrospectivo para identificar la prevalencia y las características epidemiológicas y clínicas del sarcoma de Kaposi en las personas que viven con VIH que acuden a las unidades de referencia para el manejo de casos en Guinea Ecuatorial. Se revisaron las historias clínicas de una muestra aleatoria y representativa de 338 pacientes del grupo que ha recibido tratamiento en las unidades de referencia para enfermedades infecciosas de Bata, desde enero de 2007 a febrero de 2012. Resultados: Se identificaron 40 pacientes diagnosticados de sarcoma de Kaposi (prevalencia del 11, 83 por ciento). La mediana de la edad al diagnóstico de sarcoma de Kaposi fue de 43 años, siendo la ratio del sexo de 1/1. La media de linfocitos CD4 al diagnóstico fue de 166 (rango 21-375) y la frecuencia de afectación oral fue de 45 por ciento. En la mayoría de los pacientes (94,6 por ciento) la observación del sarcoma de Kaposi fue anterior al inicio del tratamiento antirretroviral. Las cifras de linfocitos T CD4/mm3 inferiores a 100 aparecían sobre todo en pacientes menores de 30 años, y esto era especialmente frecuente en el grupo de mujeres (OR 11, p <0,04, Ic 95 por ciento 0,8-148). Conclusiones: El sarcoma de Kaposi es una neoplasia prevalente en personas que viven con VIH seguidas en las unidades de referencia en Guinea Ecuatorial. En mujeres menores de 30 años podría existir un diagnóstico tardío(AU)


Introduction: Kaposi sarcoma is an opportunistic neoplasm associated to the immunosuppression caused by HIV and related to infection by HHV-8. Objective: Describe the presentation of Kaposi sarcoma in people living with HIV in Equatorial Guinea. Methods: A retrospective descriptive study was conducted to identify the prevalence and the clinical and epidemiological characteristics of Kaposi sarcoma in people living with HIV attending reference units for the management of cases in Equatorial Guinea. A review was carried out of the medical records of a random sample representative of 338 patients from the group receiving treatment at Bata reference unit for infectious diseases from January 2007 to February 2012. Results: A total 40 patients diagnosed with Kaposi sarcoma were identified (prevalence of 11,83 percent). Mean age at Kaposi sarcoma diagnosis was 43 years, with a 1/1 sex ratio. The mean CD4 lymphocyte count at diagnosis was 166 (range 21-375), whereas the frequency of oral damage was 45 percent. In most patients (94.6 percent) detection of Kaposi sarcoma was prior to the start of antiretroviral therapy. CD4 T lymphocyte levels / mm3 below 100 were mainly found in patients aged under 30 years, a fact particularly frequent among women (OR 11, p< 0.04, CI 95% 0.8-148). Conclusions: Kaposi sarcoma is a neoplasm prevailing in people living with HIV who attend reference units in Equatorial Guinea. Late diagnosis could exist among women aged under 30 years(AU)


Assuntos
Humanos , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/epidemiologia , HIV/patogenicidade , Herpesvirus Humano 8/crescimento & desenvolvimento , Epidemiologia Descritiva , Estudos Retrospectivos , Guiné Equatorial , Infecções Oportunistas Relacionadas com a AIDS/complicações
5.
Semin Cell Dev Biol ; 111: 135-147, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32631785

RESUMO

Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.


Assuntos
Evasão da Resposta Imune/genética , MicroRNAs/genética , Neoplasias/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Viroses/genética , Alphapapillomavirus/genética , Alphapapillomavirus/crescimento & desenvolvimento , Alphapapillomavirus/patogenicidade , Antivirais/uso terapêutico , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Imunidade Inata , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/virologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Circular/imunologia , RNA Longo não Codificante/imunologia , RNA Viral/imunologia , Transdução de Sinais , Viroses/imunologia , Viroses/terapia , Viroses/virologia
6.
Virology ; 549: 5-12, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777727

RESUMO

Kaposi's sarcoma (KS) tends to occur in injured or inflamed sites of the body, which is described as the "Koebner phenomenon". KS is also unique in its extraordinary angio-hyperplastic inflammatory phenotype. Recently, evidence has accrued indicating that KS may derive from KSHV-infected mesenchymal stem cells (MSCs), which possess enhanced migration and homing ability. Inspired by these findings, we hypothesized that KS may arise from KSHV-infected MSCs that chemotactically migrate to preexisting inflammatory or injured sites. Here we report that KSHV infection of human MSCs significantly up-regulated expression of several chemokine receptors and enhanced cell migration ability in vitro. Furthermore, using a wound mouse model, we demonstrated that KSHV infection dramatically promotes MSCs migrating and settling in the wound sites. In addition, two mice in the KSHV-infected group showed purpura and tumors with KS-like features. Taken together, KSHV-enhanced MSC migration ability and inflammatory microenvironment play crucial roles in KS development.


Assuntos
Herpesvirus Humano 8/patogenicidade , Receptores CCR1/genética , Receptores CCR3/genética , Receptores CCR4/genética , Sarcoma de Kaposi/genética , Ferimentos não Penetrantes/virologia , Animais , Movimento Celular , Modelos Animais de Doenças , Orelha , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 8/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligamento Periodontal/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/metabolismo , Receptores CCR3/antagonistas & inibidores , Receptores CCR3/metabolismo , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia , Células-Tronco/virologia , Ferimentos não Penetrantes/patologia , Proteína Vermelha Fluorescente
7.
Adv Exp Med Biol ; 1225: 127-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32030652

RESUMO

Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) constitute the human γ-herpesviruses and two of the seven human tumor viruses. In addition to their viral oncogenes that primarily belong to the latent infection programs of these viruses, they encode proteins that condition the microenvironment. Many of these are early lytic gene products and are only expressed in a subset of infected cells of the tumor mass. In this chapter I will describe their function and the evidence that targeting them in addition to the latent oncogenes could be beneficial for the treatment of EBV- and KSHV-associated malignancies.


Assuntos
Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/patogenicidade , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Oncogenes , Microambiente Tumoral , Replicação Viral , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/genética , Humanos , Oncogenes/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682228

RESUMO

IFI16, an innate immune DNA sensor, recognizes the nuclear episomal herpes viral genomes and induces the inflammasome and interferon-ß responses. IFI16 also regulates cellular transcription and act as a DNA virus restriction factor. IFI16 knockdown disrupted the latency of Kaposi's sarcoma associated herpesvirus (KSHV) and induced lytic transcripts. However, the mechanism of IFI16's transcription regulation is unknown. Here, we show that IFI16 is in complex with the H3K9 methyltransferase SUV39H1 and GLP and recruits them to the KSHV genome during de novo infection and latency. The resulting depositions of H3K9me2/me3 serve as a docking site for the heterochromatin-inducing HP1α protein leading into the IFI16-dependent epigenetic modifications and silencing of KSHV lytic genes. These studies suggest that IFI16's interaction with H3K9MTases is one of the potential mechanisms by which IFI16 regulates transcription and establish an important paradigm of an innate immune sensor's involvement in epigenetic silencing of foreign DNA.


Assuntos
Autoantígenos/metabolismo , DNA Viral/metabolismo , Epigênese Genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Herpesvirus Humano 8/imunologia , Imunidade Inata , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica , Genes Virais , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Ligação Proteica , Multimerização Proteica
9.
Elife ; 82019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31647415

RESUMO

N6-methyladenosine (m6A) is the most abundant internal RNA modification of cellular mRNAs. m6A is recognised by YTH domain-containing proteins, which selectively bind to m6A-decorated RNAs regulating their turnover and translation. Using an m6A-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) ORF50 RNA, we identified seven members from the 'Royal family' as putative m6A readers, including SND1. RIP-seq and eCLIP analysis characterised the SND1 binding profile transcriptome-wide, revealing SND1 as an m6A reader. We further demonstrate that the m6A modification of the ORF50 RNA is critical for SND1 binding, which in turn stabilises the ORF50 transcript. Importantly, SND1 depletion leads to inhibition of KSHV early gene expression showing that SND1 is essential for KSHV lytic replication. This work demonstrates that members of the 'Royal family' have m6A-reading ability, greatly increasing their epigenetic functions beyond protein methylation.


Assuntos
Adenosina/análogos & derivados , Endonucleases/metabolismo , Herpesvirus Humano 8/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Replicação Viral , Adenosina/metabolismo , Biologia Computacional , Células HEK293 , Humanos , Ligação Proteica , Análise de Sequência de RNA
10.
Virology ; 536: 27-31, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31394409

RESUMO

The biology of primary lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection is still not well understood, which is largely attributed to the lack of cell lines permissive to robust lytic KSHV infection in vitro. Our study demonstrates that primary human dermal lymphatic microvascular endothelial cells (HDLMEC) support lytic KSHV replication following de novo infection, resulting in robust KSHV production, indicating that HDLMECs are suitable for studying the regulation of primary lytic KSHV infection. Importantly, by utilizing lytically infected HDLMECs, we show for the first time that the KSHV latent genes LANA and viral cyclin are required for lytic replication during de novo lytic infection, a function of these latent genes that has not yet been recognized. Since Kaposi's sarcoma is considered to be originated from infected lymphatic endothelial cells, HDLMECs represent a valuable in vitro cell culture model for investigating lytic KSHV infection, which has been understudied in KSHV pathogenesis.


Assuntos
Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Replicação Viral , Antígenos Virais/genética , Antígenos Virais/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Células Endoteliais/patologia , Células HEK293 , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Vasos Linfáticos/patologia , Vasos Linfáticos/virologia , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Latência Viral
11.
Sci Rep ; 9(1): 6416, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015491

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes both AIDS-related Kaposi's sarcoma (KS) and classic KS, but their clinical presentations are different, and respective mechanisms remain to be elucidated. The KSHV K1 gene is reportedly involved in tumorigenesis through the immunoreceptor tyrosine-based activation motif (ITAM). Since we found the sequence variations in the K1 gene of KSHV isolated from AIDS-related KS and classic KS, we hypothesized that the transformation activity of the K1 gene contributes to the different clinical presentations. To evaluate our hypothesis, we compared the transformation activities of the K1 gene between AIDS-related KS and classic KS. We also analyzed ITAM activities and the downstream AKT and NF-κB. We found that the transformation activity of AIDS-related K1 was greater than that of classic K1, and that AIDS-related K1 induced higher ITAM activity than classic K1, causing more potent Akt and NF-κB activities. K1 downregulation by siRNA in AIDS-related K1 expressing cells induced a loss of transformation properties and decreased both Akt and NF-κB activities, suggesting a correlation between the transformation activity of K1 and ITAM signaling. Our study indicates that the increased transformation activity of AIDS-related K1 is associated with its clinical aggressiveness, whereas the weak transformation activity of classic type K1 is associated with a mild clinical presentation and spontaneous regression. The mechanism of spontaneous regression of classic KS may provide new therapeutic strategy to cancer.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno/genética , Sarcoma de Kaposi/genética , Neoplasias Cutâneas/genética , Proteínas Virais/genética , Infecções Oportunistas Relacionadas com a AIDS/diagnóstico , Infecções Oportunistas Relacionadas com a AIDS/patologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Células HeLa , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/patogenicidade , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Remissão Espontânea , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Índice de Gravidade de Doença , Transdução de Sinais , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Transformação Genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
12.
Nat Microbiol ; 4(1): 164-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420784

RESUMO

Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.


Assuntos
Antígenos/metabolismo , Centrossomo/metabolismo , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 8/crescimento & desenvolvimento , Proteínas com Motivo Tripartido/metabolismo , Replicação Viral/fisiologia , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Células HeLa , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Proteínas de Homeodomínio/metabolismo , Humanos , Lâmina Nuclear/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/fisiologia , Ubiquitinação , Células Vero , Replicação Viral/genética
14.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158293

RESUMO

Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.IMPORTANCE KSHV is the causative agent of various lethal malignancies affecting immunocompromised individuals. Both lytic and latent phases of the viral life cycle contribute to the progression of these cancers. A better understanding of how viral proteins disrupt functions of a normal healthy cell to cause oncogenesis is warranted. One crucial lytic protein produced early during lytic reactivation is the multifunctional ORF59. In this report, we elucidated an important role of ORF59 in manipulating the cellular environment conducive for viral DNA replication by deregulating the normal functions of the host MCM proteins. ORF59 binds to specific MCMs and sequesters them away from replication origins in order to sabotage cellular DNA replication. Blocking cellular DNA replication ensures that cellular resources are utilized for transcription and replication of viral DNA.


Assuntos
Divisão Celular/genética , Replicação do DNA/genética , Herpesvirus Humano 8/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Sarcoma de Kaposi/genética , Proteínas Virais/genética , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ativação Viral/genética
15.
Nature ; 553(7689): 521-525, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342139

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids-comprising nearly 3,000 proteins and over 1,300 Å in diameter-present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP-MCP interaction-including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain-define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/ultraestrutura , Mutagênese , Replicação Viral , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dissulfetos/metabolismo , Desenho de Fármacos , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Replicação Viral/genética
16.
Nat Microbiol ; 3(1): 108-120, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109479

RESUMO

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) modifications (m6A/m) of messenger RNA mediate diverse cellular functions. Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases that are essential for the development of KSHV-associated cancers. To date, the role of m6A/m in KSHV replication and tumorigenesis is unclear. Here, we provide mechanistic insights by examining the viral and cellular m6A/m epitranscriptomes during KSHV latent and lytic infection. KSHV transcripts contain abundant m6A/m modifications during latent and lytic replication, and these modifications are highly conserved among different cell types and infection systems. Knockdown of YTHDF2 enhanced lytic replication by impeding KSHV RNA degradation. YTHDF2 binds to viral transcripts and differentially mediates their stability. KSHV latent infection induces 5' untranslated region (UTR) hypomethylation and 3'UTR hypermethylation of the cellular epitranscriptome, regulating oncogenic and epithelial-mesenchymal transition pathways. KSHV lytic replication induces dynamic reprogramming of epitranscriptome, regulating pathways that control lytic replication. These results reveal a critical role of m6A/m modifications in KSHV lifecycle and provide rich resources for future investigations.


Assuntos
Adenosina/análogos & derivados , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/genética , RNA Mensageiro/metabolismo , Transcriptoma , Adenosina/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Humanos , Estágios do Ciclo de Vida , Processamento Pós-Transcricional do RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral , Latência Viral , Replicação Viral
17.
J Microbiol Biotechnol ; 28(1): 165-174, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29032648

RESUMO

Glioblastoma multiforme is the most lethal malignant brain tumor. Despite many intensive studies, the prognosis of glioblastoma multiforme is currently very poor, with a median overall survival duration of 14 months and 2-year survival rates of less than 10%. Although viral infections have been emphasized as potential cofactors, their influences on pathways that support glioblastoma progression are not known. Some previous studies indicated that human Kaposi's sarcoma-associated herpesvirus (KSHV) was detected in healthy brains, and its microRNA was also detected in glioblastoma patients' plasma. However, a direct link between KSHV infection and glioblastoma is currently not known. In this study, we infected glioblastoma cells and glioma stem-like cells (GSCs) with KSHV to establish an in vitro cell model for KSHV-infected glioblastoma cells and glioma stem-like cells in order to identify virologic outcomes that overlap with markers of aggressive disease. Latently KSHV-infected glioblastoma cells and GSCs were successfully established. Additionally, using these cell models, we found that KSHV infection modulates the proliferation of glioma stem-like cells.


Assuntos
Proliferação de Células , Glioma/virologia , Herpesvirus Humano 8/crescimento & desenvolvimento , Células-Tronco/fisiologia , Células-Tronco/virologia , Células Tumorais Cultivadas/fisiologia , Células Tumorais Cultivadas/virologia , Células Cultivadas , Humanos
18.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747501

RESUMO

Latency-associated nuclear antigen (LANA) is a multifunctional protein encoded by members of the Rhadinovirus genus of gammaherpesviruses. Studies using murine gammaherpesvirus 68 (MHV68) demonstrated that LANA is important for acute replication, latency establishment, and reactivation in vivo Despite structural similarities in their DNA-binding domains (DBDs), LANA homologs from Kaposi sarcoma-associated herpesvirus (KSHV) and MHV68 exhibit considerable sequence divergence. We sought to determine if KSHV and MHV68 LANA homologs are functionally interchangeable. We generated an MHV68 virus that encodes KSHV LANA (kLANA) in place of MHV68 LANA (mLANA) and evaluated the virus's capacity to replicate, establish and maintain latency, and reactivate. kLANA knock-in (KLKI) MHV68 was replication competent in vitro and in vivo but exhibited slower growth kinetics and lower titers than wild-type (WT) MHV68. Following inoculation of mice, KLKI MHV68 established and maintained latency in splenocytes and peritoneal cells but did not reactivate efficiently ex vivo kLANA repressed the MHV68 promoter for ORF50, the gene that encodes the major lytic transactivator protein RTA, while mLANA did not, suggesting a likely mechanism for the KLKI MHV68 phenotypes. Bypassing this repression by providing MHV68 RTA in trans rescued KLKI MHV68 replication in tissue culture and enabled detection of KLKI MHV68 reactivation ex vivo These data demonstrate that kLANA and mLANA are functionally interchangeable for establishment and maintenance of latency and suggest that repression of lytic replication by kLANA, as previously shown with KSHV, is a kLANA-specific function that is transferable to MHV68.IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) are members of the Rhadinovirus genus of gammaherpesviruses. These viruses establish lifelong infections that place their respective human and murine hosts at risk for cancer. Latency-associated nuclear antigen (LANA) is a conserved Rhadinovirus protein that is necessary for long-term chronic infection by these viruses. To better understand the conserved functions performed by LANA homologs, we generated a recombinant MHV68 virus that encodes the KSHV LANA protein in place of the MHV68 LANA homolog. We determined that the KSHV LANA protein is capable of supporting MHV68 latency in a mouse model of chronic infection but also functions to repress viral replication. This work describes an in vivo model system for defining evolutionarily conserved and divergent functions of LANA homologs in Rhadinovirus infection and disease.


Assuntos
Antígenos Virais/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Proteínas Imediatamente Precoces/genética , Proteínas Nucleares/genética , Rhadinovirus/crescimento & desenvolvimento , Transativadores/genética , Latência Viral/genética , Células 3T3 , Animais , Antígenos Virais/biossíntese , Linhagem Celular , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/biossíntese , Regiões Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo
19.
J Cell Biol ; 216(9): 2745-2758, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28696226

RESUMO

Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi's sarcoma-associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.


Assuntos
Cromossomos , Replicação do DNA , DNA Viral/genética , Genoma Viral , Instabilidade Genômica , Herpesvirus Humano 8/genética , Replicação Viral , Antígenos Virais/genética , Antígenos Virais/metabolismo , Simulação por Computador , DNA Viral/biossíntese , Evolução Molecular , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Hibridização in Situ Fluorescente , Microscopia Confocal , Microscopia de Vídeo , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Tempo , Imagem com Lapso de Tempo , Transfecção
20.
J Antibiot (Tokyo) ; 70(9): 962-966, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28611469

RESUMO

Kaposi sarcoma herpesvirus (KSHV), also known as human herpesvirus 8, is the causative agent of Kaposi sarcoma; this malignant angiosarcoma is usually treated with conventional antitumor agents that can control disease evolution, but do not clear the latent KSHV episome that binds to cellular DNA. Some commercial antibacterial sulfonamides were tested for the ability to suppress latent KSHV. Quantitative PCR (qPCR) and cytofluorometry assays were used for detecting both viral DNA and the latency factor LANA (latency-associated nuclear antigen) in BC3 cells, respectively. The capacity of sulfonamides to impair MDM2-p53 complex formation was detected by an enzyme-linked immunosorbent assay method. The analysis of variance was performed according to one-way analysis of variance with Fisher as a post hoc test. Here we show that sulfonamide antibiotics are able to suppress the KSHV latent state in permanently infected BC3 lymphoma cells and interfere with the formation of the MDM2-p53 complex that KSHV seemingly needs to support latency and to trigger tumor cell transformation. These findings detected a new molecular target for the activity of sulfonamides and offer a new potential perspective for treating KSHV-induced lymphoproliferative diseases.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Antibacterianos/efeitos adversos , Antígenos Virais/metabolismo , Antivirais/efeitos adversos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Viral/efeitos dos fármacos , Células Cultivadas , DNA Viral/metabolismo , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Concentração Inibidora 50 , Proteínas Nucleares/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sulfaguanidina/efeitos adversos , Sulfaguanidina/farmacologia , Sulfametoxazol/efeitos adversos , Sulfametoxazol/farmacologia , Sulfanilamida , Sulfanilamidas/efeitos adversos , Sulfanilamidas/farmacologia , Sulfatiazol , Sulfatiazóis/efeitos adversos , Sulfatiazóis/farmacologia , Sulfonamidas/efeitos adversos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA