Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Virol ; 97(6): e0047523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272800

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
2.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726593

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi's sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.


Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Imediatamente Precoces/imunologia , Selectina L/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Ubiquitina-Proteína Ligases/imunologia , Proteínas Virais/imunologia , Regulação para Baixo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Selectina L/imunologia , Sarcoma de Kaposi/imunologia , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética
3.
Virology ; 558: 76-85, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735753

RESUMO

Kaposi's sarcoma-associated herpesvirus is a human rhadinovirus of the gammaherpesvirus sub-family. Although herpesviruses are well-studied models of capsid formation and its processes, those of KSHV remain unknown. KSHV ORF17 encoding the viral protease precursor (ORF17-prePR) is thought to contribute to capsid formation; however, functional information is largely unknown. Here, we evaluated the role of ORF17 during capsid formation by generating ORF17-deficient and ORF17 protease-dead KSHV. Both mutants showed a decrease in viral production but not DNA replication. ORF17 R-mut, with a point-mutation at the restriction or release site (R-site) by which ORF17-prePR can be functionally cleaved into a protease (ORF17-PR) and an assembly region (ORF17-pAP/-AP), failed to play a role in viral production. Furthermore, wild type KSHV produced a mature capsid, whereas ORF17-deficient and protease-dead KSHV produced a B-capsid, (i.e., a closed body possessing a circular inner structure). Therefore, ORF17 and its protease function are essential for appropriate capsid maturation.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta/genética , Animais , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Replicação do DNA , Células HEK293 , Herpesvirus Humano 8/enzimologia , Humanos , Serina Endopeptidases , Células Vero
4.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826996

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.


Assuntos
Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/metabolismo , Fases de Leitura Aberta , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Latência Viral/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Mutação , Fases de Leitura Aberta/genética , Proteínas Tirosina Quinases/genética , Sarcoma de Kaposi/virologia , Células Vero , Latência Viral/fisiologia , Replicação Viral
5.
Biochem Biophys Res Commun ; 521(4): 1083-1088, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31733836

RESUMO

Open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a serine/threonine-type viral protein kinase (vPK). Previous studies have examined the functions of KSHV vPK; however, its role in the activation of extracellular signal-regulated kinase (ERK1/2) has not yet been described to date. Using HEK 293 cell lines, we performed a human phospho-kinase array analysis to screen for MAPK signaling pathways kinases that are activated by KSHV vPK. In addition, we investigated the regulator protein phosphorylation of up/downstream ERK1/2 pathway; nuclear translocation of phosphorylated ERK1/2; and regulation of transcription factor, inflammatory cytokine, and pro-/anti-apoptotic factor by KSHV vPK transfection. Here, we demonstrated that KSHV vPK activates ERK1/2 signaling pathway and plays an important role in the activation of MAPK/ERK signaling pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Herpesvirus Humano 8/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases/metabolismo , Núcleo Celular/metabolismo , Gammaherpesvirinae/enzimologia , Células HEK293 , Humanos , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 46(22): 11968-11979, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30321376

RESUMO

A number of viruses remodel the cellular gene expression landscape by globally accelerating messenger RNA (mRNA) degradation. Unlike the mammalian basal mRNA decay enzymes, which largely target mRNA from the 5' and 3' end, viruses instead use endonucleases that cleave their targets internally. This is hypothesized to more rapidly inactivate mRNA while maintaining selective power, potentially though the use of a targeting motif(s). Yet, how mRNA endonuclease specificity is achieved in mammalian cells remains largely unresolved. Here, we reveal key features underlying the biochemical mechanism of target recognition and cleavage by the SOX endonuclease encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). Using purified KSHV SOX protein, we reconstituted the cleavage reaction in vitro and reveal that SOX displays robust, sequence-specific RNA binding to residues proximal to the cleavage site, which must be presented in a particular structural context. The strength of SOX binding dictates cleavage efficiency, providing an explanation for the breadth of mRNA susceptibility observed in cells. Importantly, we establish that cleavage site specificity does not require additional cellular cofactors, as had been previously proposed. Thus, viral endonucleases may use a combination of RNA sequence and structure to capture a broad set of mRNA targets while still preserving selectivity.


Assuntos
Endonucleases/genética , Herpesvirus Humano 8/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Virais/genética , Animais , Sítios de Ligação , Endonucleases/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Humanos , Insetos , Cinética , Mutação , Clivagem do RNA , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Proteínas Virais/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30061278

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Herpesvirus Humano 8/enzimologia , Sarcoma de Kaposi/virologia , Varredura Diferencial de Calorimetria , Domínio Catalítico , DNA Viral/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Ativação Enzimática/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia , Herpesvirus Humano 8/genética , Integrases/genética , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Estrutura Secundária de Proteína , Ribonuclease H/genética
8.
J Clin Invest ; 128(6): 2519-2534, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733294

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi's sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We believe this is the first mouse tumor model of a viral kinase encoded by a pathogenic human virus. We observed increased B cell activation in the vPK transgenic mice compared with normal mice. We also found that, over time, vPK transgenic mice developed a B cell hyperproliferative disorder and/or a high-grade B cell non-Hodgkin lymphoma at a greatly increased incidence compared with littermate controls. This mouse model shows that a viral protein kinase is capable of promoting B cell activation and proliferation as well as augmenting lymphomagenesis in vivo and may therefore contribute to the development of viral cancers.


Assuntos
Transformação Celular Viral , Herpesvirus Humano 8/enzimologia , Linfoma de Efusão Primária/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Animais , Hiperplasia do Linfonodo Gigante/enzimologia , Hiperplasia do Linfonodo Gigante/genética , Hiperplasia do Linfonodo Gigante/patologia , Hiperplasia do Linfonodo Gigante/virologia , Herpesvirus Humano 8/genética , Humanos , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/patologia , Linfoma de Efusão Primária/virologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas Quinases/genética
9.
Nucleic Acids Res ; 46(8): 4286-4300, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29596604

RESUMO

Efficient γ-herpesvirus lytic phase replication requires a virally encoded UNG-type uracil-DNA glycosylase as a structural element of the viral replisome. Uniquely, γ-herpesvirus UNGs carry a seven or eight residue insertion of variable sequence in the otherwise highly conserved minor-groove DNA binding loop. In Epstein-Barr Virus [HHV-4] UNG, this motif forms a disc-shaped loop structure of unclear significance. To ascertain the biological role of the loop insertion, we determined the crystal structure of Kaposi's sarcoma-associated herpesvirus [HHV-8] UNG (kUNG) in its product complex with a uracil-containing dsDNA, as well as two structures of kUNG in its apo state. We find the disc-like conformation is conserved, but only when the kUNG DNA-binding cleft is occupied. Surprisingly, kUNG uses this structure to flip the orphaned partner base of the substrate deoxyuridine out of the DNA duplex while retaining canonical UNG deoxyuridine-flipping and catalysis. The orphan base is stably posed in the DNA major groove which, due to DNA backbone manipulation by kUNG, is more open than in other UNG-dsDNA structures. Mutagenesis suggests a model in which the kUNG loop is pinned outside the DNA-binding cleft until DNA docking promotes rigid structuring of the loop and duplex nucleotide flipping, a novel observation for UNGs.


Assuntos
DNA/química , Herpesvirus Humano 8/enzimologia , Uracila-DNA Glicosidase/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , DNA/metabolismo , Herpesvirus Humano 4/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/metabolismo , Uracila-DNA Glicosidase/metabolismo
10.
Biochem Biophys Res Commun ; 497(1): 381-387, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29432739

RESUMO

Viral factors interact with host cellular proteins, leading to dysregulation of signaling pathways. The Wnt pathway is known to participate in embryonic development and oncogenesis under dysregulation conditions. A downstream factor of the Wnt signaling pathway, ß-catenin, activates T-cell factor (TCF)-dependent transcription, which contributes to cell proliferation and tumorigenesis. In this study, we demonstrated that viral protein kinase (vPK) encoded by Kaposi's sarcoma-associated herpesvirus inhibits the Wnt signaling pathway without affecting nuclear localization and expression of ß-catenin. Coimmunoprecipitation and chromatin immunoprecipitation assays revealed that vPK interacts with ß-catenin, reducing the binding affinity on TCF binding regions as well as interactions of ß-catenin with TCF4. Overexpression of vPK led to reduced mRNA expression of cyclin D1, a well-known transcriptional product of Wnt signaling, suggesting that vPK effectively regulates the host signaling pathway through direct interactions with cellular proteins.


Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Quinases/metabolismo , Fator de Transcrição 4/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Células HEK293 , Humanos
11.
Viruses ; 9(10)2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065450

RESUMO

Gammaherpesviruses like Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS), an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML) protein-associated nuclear bodies (PML-NBs) by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.


Assuntos
Herpesvirus Humano 8/química , Interações Hospedeiro-Patógeno , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Replicação do DNA/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Ubiquitinação , Replicação Viral
12.
J Am Chem Soc ; 139(34): 11650-11653, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28759216

RESUMO

Targeting of cryptic binding sites represents an attractive but underexplored approach to modulating protein function with small molecules. Using the dimeric protease (Pr) from Kaposi's sarcoma-associated herpesvirus (KSHV) as a model system, we sought to dissect a putative allosteric network linking a cryptic site at the dimerization interface to enzyme function. Five cryogenic X-ray structures were solved of the monomeric protease with allosteric inhibitors bound to the dimer interface site. Distinct coordinated movements captured by the allosteric inhibitors were also revealed as alternative states in room-temperature X-ray data and comparative analyses of other dimeric herpesvirus proteases. A two-step mechanism was elucidated through detailed kinetic analyses and suggests an enzyme isomerization model of inhibition. Finally, a representative allosteric inhibitor from this class was shown to be efficacious in a cellular model of viral infectivity. These studies reveal a coordinated dynamic network of atomic communication linking cryptic binding site occupancy and allosteric inactivation of KHSV Pr that can be exploited to target other members of this clinically relevant family of enzymes.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Cristalografia por Raios X , Infecções por Herpesviridae/tratamento farmacológico , Herpesvirus Humano 8/química , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeo Hidrolases/química , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
13.
PLoS Pathog ; 13(7): e1006482, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28678843

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.


Assuntos
Arginina/metabolismo , Genoma Viral , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/fisiologia , Histonas/metabolismo , Ativação Viral , Motivos de Aminoácidos , Arginina/química , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/genética , Histonas/química , Histonas/genética , Interações Hospedeiro-Patógeno , Humanos , Metilação
14.
Virology ; 501: 119-126, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27912080

RESUMO

Expression of Kaposi's sarcoma herpesvirus vFLIP, a potent activator of NFkB signaling, promotes latency. Inhibition of NFkB signaling promotes lytic reactivation. We previously reported that lytic inducer, RTA, inhibits vFLIP induced NFkB signaling by inducing the degradation of vFLIP via the proteasome. Here we report that the cellular ubiquitin ligase, Itch, is required for RTA induced degradation of vFLIP. Expression of either Itch targeting shRNA or a dominant negative mutant of the ubiquitin ligase both increased the stability of vFLIP in the presence of RTA. Itch potently ubiquitinated vFLIP in vivo and in vitro. We provide evidence for interaction between RTA, vFLIP and Itch and we identified an RTA resistant mutant of vFLIP that is unable to interact with Itch. These observations contribute to our understanding of how RTA counteracts the activities of vFLIP.


Assuntos
Infecções por Herpesviridae/enzimologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Ligação Proteica , Proteólise , Proteínas Repressoras/genética , Transativadores/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética
15.
PLoS One ; 11(12): e0168019, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936107

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), complexes with dUMP (binary), and complexes with both dUMP and raltitrexed (ternary) were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.


Assuntos
Antimetabólitos Antineoplásicos/química , Herpesvirus Humano 8/enzimologia , Núcleosídeo-Fosfato Quinase/química , Quinazolinas/química , Tiofenos/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Homologia de Sequência de Aminoácidos
17.
Proc Natl Acad Sci U S A ; 113(28): 7876-81, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342859

RESUMO

Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.


Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Virais/metabolismo , Simulação por Computador , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Especificidade por Substrato , Proteínas Virais/química
18.
J Virol ; 90(14): 6515-6525, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27147746

RESUMO

UNLABELLED: The host intracellular antiviral restriction factors inhibit viral infection and replication. The 5'-AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. Activated AMPK inhibits the replication of numerous RNA viruses but enhances the entry of vaccinia virus. However, the role of AMPK in herpesvirus infection is unclear. In this study, we showed that the constitutive AMPK activity restricted Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in primary human umbilical vein endothelial cells while KSHV infection did not markedly affect the endogenous AMPK activity. Knockdown of the AMPKα1 considerably enhanced the expression of viral lytic genes and the production of infectious virions, while overexpression of a constitutively active AMPK had the opposite effects. Accordingly, an AMPK inhibitor, compound C, augmented viral lytic gene expressions and virion productions but an AMPK agonist, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), suppressed both. Furthermore, a common diabetes drug, metformin, which carries an AMPK-agonistic activity, drastically inhibited the expression of viral lytic genes and the production of infectious virions, suggesting the use of metformin as a therapeutic agent for KSHV infection and replication. Together, these results identify the host AMPK as a KSHV restriction factor that can serve as a potential therapeutic target. IMPORTANCE: Host cells encode specific proteins to restrict viral infection and replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus associated with several cancers. In this study, we have identified 5'-AMP-activated protein kinase (AMPK), a cellular energy sensor, as a restriction factor of KSHV lytic replication during primary infection. Activation of AMPK suppresses, while inhibition of AMPK enhances, KSHV lytic replication by regulating the expression of viral genes. AICAR and metformin, both of which are AMPK agonists currently used in clinics for the treatment of conditions associated with metabolic disorders, inhibit KSHV lytic replication. Thus, our work has identified AMPK as a potential therapeutic target and AICAR and metformin as potential therapeutic agents for KSHV-associated cancers.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Sarcoma de Kaposi/tratamento farmacológico , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Herpesvirus Humano 8/enzimologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Fosforilação/efeitos dos fármacos , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia
19.
J Virol ; 90(13): 5953-5964, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099309

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Quinases/metabolismo , Replicação Viral , Linhagem Celular , Cromossomos Artificiais Bacterianos , Estabilidade Enzimática , Edição de Genes , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Proteínas Imediatamente Precoces/genética , Mutagênese , Mutação , Fosforilação , Proteínas Quinases/genética , Eletricidade Estática , Vírion/química , Vírion/genética
20.
ChemMedChem ; 11(8): 862-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26822284

RESUMO

Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces.


Assuntos
Herpesvirus Humano 8/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA