Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.000
Filtrar
1.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963696

RESUMO

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.


Assuntos
Osso e Ossos , Encéfalo , Sistema Nervoso Simpático , Animais , Sistema Nervoso Simpático/fisiologia , Camundongos , Encéfalo/fisiologia , Encéfalo/metabolismo , Osso e Ossos/inervação , Osso e Ossos/fisiologia , Herpesvirus Suídeo 1/fisiologia
2.
Acta Biomater ; 183: 330-340, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838909

RESUMO

Although vaccination with inactivated vaccines is a popular preventive method against pseudorabies virus (PRV) infection, inactivated vaccines have poor protection efficiency because of their weak immunogenicity. The development of an effective adjuvant is urgently needed to improve the efficacy of inactivated PRV vaccines. In this study, a promising nanocomposite adjuvant named as MIL@A-SW01-C was developed by combining polyacrylic acid-coated metal-organic framework MIL-53(Al) (MIL@A) and squalene (oil)-in-water emulsion (SW01) and then mixing it with a carbomer solution. One part of the MIL@A was loaded onto the oil/water interface of SW01 emulsion via hydrophobic interaction and coordination, while another part was dispersed in the continuous water phase using carbomer. MIL@A-SW01-C showed good biocompatibility, high PRV (antigen)-loading capability, and sustained antigen release. Furthermore, the MIL@A-SW01-C adjuvanted PRV vaccine induced high specific serum antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response compared with commercial adjuvants, such as alum and biphasic 201. In the mouse challenge experiment, two- and one-shot vaccinations resulted in survival rates of 73.3 % and 86.7 %, respectively. After one-shot vaccination, the host animal pigs were also challenged with wild PRV. A protection rate of 100 % was achieved, which was much higher than that observed with commercial adjuvants. This study not only establishes the superiority of MIL@A-SW01-C composite nanoadjuvant for inactivated PRV vaccine in mice and pigs but also presents an effective method for developing promising nanoadjuvants. STATEMENT OF SIGNIFICANCE: We have developed a nanocomposite of MIL-53(Al) and oil-in-water emulsion (MIL@A-SW01-C) as a promising adjuvant for the inactivated PRV vaccines. MIL@A-SW01-C has good biocompatibility, high PRV (antigen) loading capability, and prolonged antigen release. The developed nanoadjuvant induced much higher specific IgG antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response than commercial adjuvants alum and biphasic 201. In mouse challenge experiments, survival rates of 73.3 % and 86.7 % were achieved from two-shot and one-shot vaccinations, respectively. At the same time, a protection rate of 100 % was achieved with the host animal pigs challenged with wild PRV.


Assuntos
Adjuvantes Imunológicos , Emulsões , Animais , Adjuvantes Imunológicos/farmacologia , Emulsões/química , Camundongos , Suínos , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Camundongos Endogâmicos BALB C , Óleos/química , Feminino , Água/química , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/metabolismo
3.
Vet Microbiol ; 295: 110107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838382

RESUMO

Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of ß-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/ß levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Lectinas Tipo C , Pseudorraiva , beta-Glucanas , Animais , beta-Glucanas/farmacologia , beta-Glucanas/administração & dosagem , Camundongos , Suínos , Lectinas Tipo C/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Interferon Tipo I/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Antivirais/farmacologia , Vacinas Virais/imunologia , Feminino
4.
Vet Microbiol ; 295: 110165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936156

RESUMO

Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.


Assuntos
Autofagia , Proteínas de Choque Térmico HSP40 , Herpesvirus Suídeo 1 , Replicação Viral , Animais , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Linhagem Celular , Suínos , Interações Hospedeiro-Patógeno , Pseudorraiva/virologia
5.
Vet Microbiol ; 295: 110164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936155

RESUMO

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Assuntos
Herpesvirus Suídeo 1 , Ubiquitina-Proteína Ligases , Replicação Viral , Rede trans-Golgi , Herpesvirus Suídeo 1/fisiologia , Animais , Rede trans-Golgi/virologia , Rede trans-Golgi/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fusão Celular , Suínos , Linhagem Celular , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Células HEK293 , Pseudorraiva/virologia
6.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920600

RESUMO

Development and optimisation of bioelectronic monitoring techniques like microelectrode array-based field potential measurement and impedance spectroscopy for the functional, label-free and non-invasive monitoring of in vitro neuronal networks is widely investigated in the field of biosensors. Thus, these techniques were individually used to demonstrate the capabilities of, e.g., detecting compound-induced toxicity in neuronal culture models. In contrast, extended application for investigating the effects of central nervous system infecting viruses are rarely described. In this context, we wanted to analyse the effect of herpesviruses on functional neuronal networks. Therefore, we developed a unique hybrid bioelectronic monitoring platform that allows for performing field potential monitoring and impedance spectroscopy on the same microelectrode. In the first step, a neuronal culture model based on primary hippocampal cells from neonatal rats was established with reproducible and stable synchronised electrophysiological network activity after 21 days of cultivation on microelectrode arrays. For a proof of concept, the pseudorabies model virus PrV Kaplan-ΔgG-GFP was applied and the effect on the neuronal networks was monitored by impedance spectroscopy and field potential measurement for 72 h in a multiparametric mode. Analysis of several bioelectronic parameters revealed a virus concentration-dependent degeneration of the neuronal network within 24-48 h, with a significant early change in electrophysiological activity, subsequently leading to a loss of activity and network synchronicity. In conclusion, we successfully developed a microelectrode array-based hybrid bioelectronic measurement platform for quantitative monitoring of pathologic effects of a herpesvirus on electrophysiological active neuronal networks.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Neurônios , Animais , Ratos , Neurônios/virologia , Rede Nervosa , Microeletrodos , Hipocampo/virologia , Herpesvirus Suídeo 1 , Células Cultivadas , Pseudorraiva/virologia
7.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
8.
Vet Microbiol ; 294: 110120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749211

RESUMO

Pig production is increasing annually in Africa as it is recognized as a significant source of income, livelihood and food security, particularly in rural communities. Understanding the circulating swine pathogens is crucial for the success of this emerging industry. Although there is extensive data available on the African swine fever virus due to its devastating impact on pig production, knowledge about the presence of other viral swine pathogens on the continent is still extremely limited. This review discusses what is currently known about six swine pathogens in Africa: classical swine fever virus, porcine reproductive and respiratory syndrome virus, porcine circovirus-2, porcine circovirus-3, porcine parvovirus-1, and pseudorabies virus. Gaps in our knowledge are identified and topics of future focus discussed.


Assuntos
Animais Selvagens , Circovirus , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , África/epidemiologia , Circovirus/isolamento & purificação , Circovirus/genética , Circovirus/classificação , Animais Selvagens/virologia , Parvovirus Suíno/isolamento & purificação , Parvovirus Suíno/genética , Viroses/veterinária , Viroses/epidemiologia , Viroses/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais Domésticos/virologia , Herpesvirus Suídeo 1/isolamento & purificação , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Domesticação
9.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719009

RESUMO

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Assuntos
Adjuvantes Imunológicos , Herpesvirus Suídeo 1 , Imunidade Celular , Imunidade Humoral , Manganês , Nanopartículas , Polissacarídeos Bacterianos , Taninos , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Nanopartículas/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Taninos/química , Taninos/farmacologia , Manganês/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/imunologia , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Polifenóis
10.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793591

RESUMO

In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Deleção de Genes , Herpesvirus Suídeo 1 , Vacinas contra Pseudorraiva , Pseudorraiva , Animais , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Pseudorraiva/virologia , Vacinas contra Pseudorraiva/imunologia , Vacinas contra Pseudorraiva/genética , Vacinas contra Pseudorraiva/administração & dosagem , Camundongos Endogâmicos BALB C , Suínos , Feminino , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Recombinação Homóloga , Citocinas/metabolismo , China
11.
Vet Res ; 55(1): 68, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807225

RESUMO

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Liberação de Vírus , Proteínas rab de Ligação ao GTP , Animais , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/genética , Suínos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , Pseudorraiva/virologia , Montagem de Vírus/fisiologia , Doenças dos Suínos/virologia , Linhagem Celular
12.
PLoS Pathog ; 20(4): e1012146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669242

RESUMO

Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.


Assuntos
Apoptose , Herpesvirus Suídeo 1 , Mitocôndrias , Pseudorraiva , Proteínas Virais , Animais , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Herpesviridae/patogenicidade , Herpesviridae/genética , Replicação Viral/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Virulência
13.
Virol Sin ; 39(3): 403-413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636706

RESUMO

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Triptofano-tRNA Ligase , Replicação Viral , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/genética , Animais , Linhagem Celular , Suínos , Triptofano-tRNA Ligase/metabolismo , Triptofano-tRNA Ligase/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Interações Hospedeiro-Patógeno , Camundongos
14.
Front Immunol ; 15: 1339387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571947

RESUMO

Background: Porcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China. Methods: In this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice. Results: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators. Conclusion: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Suínos , Animais , Camundongos , Herpesvirus Suídeo 1/genética , Pseudorraiva/prevenção & controle , Interleucina-4/genética , Circovirus/genética , Vacinas Sintéticas
15.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578790

RESUMO

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Assuntos
Alphaherpesvirinae , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Corpo Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Axônios , Alphaherpesvirinae/metabolismo , Neurônios , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/metabolismo , Exocitose
16.
Braz J Microbiol ; 55(2): 1961-1966, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38589741

RESUMO

The FTA card has emerged as a promising alternative for nucleic acid extraction. The FTA card is a filter paper impregnated with chemicals that preserve and stabilize the genetic material present in the sample, allowing for its storage and transport at room temperature. The aim of this study was to test the card for the detection of RNA and DNA nucleic acids. Two RNA viruses (Senecavirus A and classical swine fever virus) and two DNA viruses (African swine fever virus and suid alphaherpesvirus 1) were tested, and in all cases, there was a decrease in sensitivity. The methods exhibited good repeatability and demonstrated a rapid and practical use for sample transport and nucleic acid extraction.


Assuntos
Vírus da Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Herpesvirus Suídeo 1/isolamento & purificação , Herpesvirus Suídeo 1/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Medicina Veterinária/métodos , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Picornaviridae/classificação , Sensibilidade e Especificidade , DNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Manejo de Espécimes/métodos , Manejo de Espécimes/instrumentação
17.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Miosina não Muscular Tipo IIA , Pseudorraiva , Animais , Humanos , Camundongos , Linhagem Celular , DNA Viral/imunologia , Células HEK293 , Herpesvirus Suídeo 1/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Miosina não Muscular Tipo IIA/metabolismo , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Pseudorraiva/imunologia , Pseudorraiva/virologia , Transdução de Sinais , Suínos
18.
J Med Virol ; 96(4): e29568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38549430

RESUMO

The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.


Assuntos
Vacinas Anticâncer , Herpesvirus Suídeo 1 , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Vírus Oncolíticos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Herpesvirus Suídeo 1/genética , Neoplasias Renais/terapia , Vírus Oncolíticos/genética , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Vacinas Atenuadas , Vacinas Anticâncer/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico
19.
Viruses ; 16(3)2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543829

RESUMO

Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.


Assuntos
Citosina/análogos & derivados , Herpesviridae , Herpesvirus Suídeo 1 , Organofosfonatos , Pseudorraiva , Doenças dos Suínos , Humanos , Animais , Camundongos , Suínos , Herpesvirus Suídeo 1/genética , Pseudorraiva/patologia , Replicação Viral , Proliferação de Células , Doenças dos Suínos/patologia
20.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305153

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Assuntos
Antivirais , Herpesvirus Suídeo 1 , Polietilenoimina , Eletricidade Estática , Animais , Adsorção/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Suínos/virologia , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA