RESUMO
In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.
Assuntos
Bactérias , Microbioma Gastrointestinal , Hesperidina , Pectinas , Hesperidina/farmacologia , Hesperidina/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Pectinas/metabolismo , Pectinas/química , Pectinas/farmacologia , Fermentação , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Digestão , Modelos BiológicosRESUMO
Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.
Assuntos
Metiltransferases , Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Especificidade por Substrato , Hesperidina/metabolismo , Hesperidina/química , Zea mays , Polifenóis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
Neohesperidin is a flavonoid glycoside widely used in the food and pharmaceutical industries. The current production of neohesperidin mainly relies on extraction from plants. Microbial fermentation demonstrates a promising prospect as an environmentally friendly, efficient, and economical method. In this study, we designed and constructed the biosynthetic pathway of neohesperidin in an Escherichia coli strain by introducing the glycosyltransferase UGT73B2 from Arabidopsis thaliana, rhamnose synthase VvRHM-NRS from Vitis vinifera, and rhamnose transferase Cm1,2RhaT from Citrus maxima. After optimization of the module and the uridine diphosphate (UDP)-glucose synthetic pathway, the engineered strain produced 4.64 g/L neohesperidin in a 5 L bioreactor, and the molar conversion rate of hesperetin was 45.8%. This has been the highest titer reported to date for the biosynthesis of neohesperidin in microorganisms. This study lays a foundation for the construction and application of strains with high yields of neohesperidin and provides a potential choice for the microbial production of other flavonoid glycosides.
Assuntos
Escherichia coli , Hesperidina , Engenharia Metabólica , Hesperidina/metabolismo , Hesperidina/biossíntese , Hesperidina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Arabidopsis/genética , Citrus , Fermentação , Vias Biossintéticas/genética , VitisRESUMO
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Assuntos
Biodegradação Ambiental , Hesperidina , Metais Pesados , Metais Pesados/metabolismo , Hesperidina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.
Assuntos
Hesperidina , Aldeído Pirúvico , Animais , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/química , Hesperidina/metabolismo , Hesperidina/química , Hesperidina/análogos & derivados , Ratos , Masculino , Ratos Sprague-Dawley , HumanosRESUMO
Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.
Assuntos
Aldeídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistência à Doença , Hesperidina/análise , Hesperidina/metabolismo , Hesperidina/farmacologia , Triptofano/metabolismo , Simulação de Acoplamento Molecular , FrutasRESUMO
The ubiquitous metalloid arsenic (As), which is not essential, can be found extensively in the soil and subterranean water of numerous nations, raising substantial apprehensions due to its impact on both agricultural productivity and sustainability. Plants exposed to As often display morphological, physiological, and growth-related abnormalities, collectively leading to reduced productivity. Polyphenols, operating as secondary messengers within the intricate signaling networks of plants, assume integral functions in the acquisition of resistance to diverse environmental stressors, including but not limited to drought, salinity, and exposure to heavy metals. The pivotal roles played by polyphenols in these adaptive processes underscore their profound significance in plant biology. This study aims to elucidate the impact of hesperidin (HP) and chlorogenic acid (CA), recognized as potent bioactive compounds, on maize plants exposed to As. To achieve this objective, the study examined the physiological and biochemical impacts, including growth parameters, photosynthesis, and chloroplastic antioxidants, of HP (100 µM) and CA (50 µM) on Zea mays plants exposed to arsenate stress (AsV, 100 µM - Na2HAsO4â 7H2O). As toxicity led to reductions in fresh weight (FW) and dry weight (DW) by 33% and 26%, respectively. However, the application of As+HP and As + CA increased FW by 22% and 40% and DW by 14% and 17%, respectively, alleviating the effects of As stress. As toxicity resulted in the up-regulation of PSII genes (psbA and psbD) and PSI genes (psaA and psaB), indicating a potential response to the re-formation of degraded regions, likely driven by the heightened demand for photosynthesis. Exogenous HP or/and CA treatments effectively counteracted the adverse effects of As toxicity on the photochemical quantum efficiency of PSII (Fv/Fm). H2O2 content showed a 23% increase under As stress, and this increase was evident in guard cells when examining confocal microscopy images. In the presence of As toxicity, the chloroplastic antioxidant capacity can exhibit varying trends, with either a decrease or increase observed. After the application of CA and/or HP, a significant increase was observed in the activity of GR, APX, GST, and GPX enzymes, resulting in decreased levels of H2O2 and MDA. Additionally, the enhanced functions of MDHAR and DHAR have modulated the redox status of ascorbic acid (AsA) and glutathione (GSH). The HP or CA-mediated elevated levels of AsA and GSH content further contributed to the preservation of redox homeostasis in chloroplasts facing stress induced by As. In summary, the inclusion of HP and CA in the growth medium sustained plant performance in the presence of As toxicity by regulating physiological and biochemical characteristics, chloroplastic antioxidant enzymes, the AsA-GSH cycle and photosynthesis processes, thereby demonstrating their significant potential to confer resistance to maize through the mitigation of As-induced oxidative damage and the safeguarding of photosynthetic mechanisms.
Assuntos
Arsênio , Hesperidina , Antioxidantes/metabolismo , Zea mays/metabolismo , Arsênio/farmacologia , Ácido Clorogênico/metabolismo , Hesperidina/farmacologia , Hesperidina/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oxirredução , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Glutationa/metabolismo , Expressão GênicaRESUMO
The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4â¯mg/g diet), Hesperetin (0.2 and 0.4â¯mg/g diet), and Hesperidin (0.1 and 0.4â¯mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.
Assuntos
Hesperidina , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Drosophila melanogaster , Hesperidina/farmacologia , Hesperidina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Flavonoides/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/prevenção & controle , Fenótipo , Monoaminoxidase/metabolismo , RNA Mensageiro/metabolismoRESUMO
AIMS: This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS: Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS: Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION: Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.
Assuntos
Lesões Encefálicas Traumáticas , Hesperidina , Humanos , Microglia , Citrato (si)-Sintase/metabolismo , Citrato (si)-Sintase/farmacologia , Lisina/metabolismo , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Doenças Neuroinflamatórias , Hesperidina/metabolismo , Hesperidina/farmacologia , Citratos , Lesões Encefálicas Traumáticas/metabolismoRESUMO
A negative impact of finasteride on fertility has been reported, in which over production of reactive oxygen species and apoptosis were implicated. Hesperidin, a plant-derived bioflavonoid with antioxidant and anti-apoptotic effects, may mitigate these adverse effects. In order to investigate the possible protective role of hesperidin against finasteride-induced seminiferous tubules toxicity in adult male Wistar rats, 60 rats were randomized into five groups (I-V) receiving distilled water, 0.5% sodium carboxymethylcellulose solution, hesperidin, finasteride, and combined hesperidin and finasteride respectively. Testicular weight, sperm count and motility were determined. Testicular tissue homogenates were prepared to measure the level of malondialdehyde (MDA), total antioxidant capacity (TAC), reduced glutathione (GSH) and the gene expression of caspase-3 and B-cell lymphoma 2 (Bcl2). Testes were processed for light and electron microscopic evaluation. Johnsen score was calculated. Administration of finasteride resulted in significantly decreased testicular weights, sperm count and motility, Johnsen score, tissue levels of TAC and GSH together with significant increase in tissue MDA. Gene expression revealed significantly increased caspase-3 and decreased Bcl2. Furthermore, finasteride disrupted the seminiferous tubules, causing degenerative changes affecting Sertoli cells and spermatogenic cells. Co-administration of hesperidin with finasteride resulted in improvement in testicular weights, TAC, GSH, Bcl2, Johnsen score, sperm count and motility as well as preservation of the structure of the seminiferous tubules. To conclude, hesperidin was found to have a protective potential on finasteride-induced oxidative stress, apoptosis and testicular structural damage.
Assuntos
Hesperidina , Testículo , Masculino , Ratos , Animais , Ratos Wistar , Hesperidina/metabolismo , Hesperidina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Finasterida/toxicidade , Finasterida/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Sêmen/metabolismo , Túbulos Seminíferos , Espermatozoides , Estresse Oxidativo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
BACKGROUND: Hesperidin, a flavanone commonly found in citrus fruits and herbal formulations, has emerged as a potential new therapeutic agent for modulating several diseases. Since pre-eclampsia is a growing public health threat, it may negatively impact the economy and increase the disease burden of South Africa. Phytocompounds are easily accessible, demonstrate minimal side effects, and may confer novel medicinal options as a treatment and preventive preference. OBJECTIVE: To investigate the physiological, biochemical, and hematological outcomes of hesperidin in an arginine vasopressin (AVP)-induced rodent model of pre-eclampsia. METHODS: Female Sprague-Dawley rats were surgically implanted with mini-osmotic pumps to deliver AVP (200 ng/h) subcutaneously. Animals were treated with hesperidin at 200 mg/kg.b.w via oral gavage for 14 days. Systolic and diastolic blood pressures were measured on GD 7, 14, and 18 using a non-invasive tail-cuff method and were euthanized on GD 21. RESULTS: The findings showed that hesperidin administration significantly decreased blood pressure (P < 0.05) and urinary protein levels in pregnant rats (P < 0.001). Placental and individual pup weight also increased significantly in the pregnant hesperidin-treated groups compared to AVP untreated groups (P < 0.001). Biochemical and hematological markers such as white blood cell count and lymphocyte levels differed significantly (P < 0.05) in AVP groups treated with and without hesperidin. CONCLUSION: Our results suggest that hesperidin is an antihypertensive agent with modes of action associated with its diuretic and blood pressure lowering effects and reduction of proteinuria in AVP-induced pre-eclamptic rats.
Assuntos
Hesperidina , Pré-Eclâmpsia , Humanos , Ratos , Feminino , Gravidez , Animais , Pré-Eclâmpsia/tratamento farmacológico , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Arginina Vasopressina/uso terapêutico , Hesperidina/farmacologia , Hesperidina/metabolismo , Hesperidina/uso terapêutico , Placenta/metabolismo , Ratos Sprague-Dawley , Pressão SanguíneaRESUMO
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid ß-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid ß oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid ß-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid ß-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid ß-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Assuntos
Hesperidina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Hesperidina/farmacologia , Hesperidina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Osteoporosis (OP) is distinguished by a reduction in bone mass and degradation of bone micro-structure, frequently resulting in fractures. As the geriatric demographic expands, the incidence of affected individuals progressively rises, thereby exerting a significant impact on the quality of life experienced by individuals. The flavonoid compound hesperidin has been subject to investigation regarding its effects on skeletal health, albeit the precise mechanisms through which it operates remain ambiguous. This study utilized network pharmacology to predict the core targets and signaling pathways implicated in the anti-OP properties of hesperidin. Molecular docking and molecular dynamics simulations were employed to confirm the stability of the interaction between hesperidin and the core targets. The effects of hesperidin on osteoblastic cells MC3T3-E1 were assessed using MTT, ELISA, alkaline phosphatase assay, and RT-qPCR techniques. Furthermore, in vivo experiments were conducted to determine the potential protective effects of hesperidin on zebrafish bone formation and oxidative stress response. The results demonstrate that network pharmacology has identified 10 key target points, significantly enriched in the estrogen signaling pathway. Hesperidin exhibits notable promotion of MC3T3-E1 cell proliferation and significantly enhances ALP activity. ELISA measurements indicate an elevation in NO levels and a reduction in IL-6 and TNF-α. Moreover, RT-qPCR analysis consistently reveals that hesperidin significantly modulates the mRNA levels of ESR1, SRC, AKT1, and NOS3 in MC3T3-E1 cells. Hesperidin promotes osteogenesis and reduces oxidative stress in zebrafish. Additionally, we validate the stable and tight binding of hesperidin with ESR1, SRC, AKT1, and NOS3 through molecular dynamics simulations. In conclusion, our comprehensive analysis provides evidence that hesperidin may exert its effects on alleviating OP through the activation of the estrogen signaling pathway via ESR1. This activation leads to the upregulation of SRC, AKT, and eNOS, resulting in an increase in NO levels. Furthermore, hesperidin promotes osteoblast-mediated bone formation and inhibits pro-inflammatory cytokines, thereby alleviating oxidative stress associated with OP.
Assuntos
Hesperidina , Osteoporose , Animais , Humanos , Idoso , Hesperidina/farmacologia , Hesperidina/metabolismo , Peixe-Zebra , Diferenciação Celular , Simulação de Acoplamento Molecular , Qualidade de Vida , Transdução de Sinais , Osteogênese , Osteoblastos , Estrogênios/farmacologia , Osteoporose/metabolismoRESUMO
This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.
Assuntos
Hesperidina , Testículo , Humanos , Adulto , Masculino , Ratos , Hesperidina/farmacologia , Hesperidina/metabolismo , Hipófise/metabolismo , Testosterona , AnimaisRESUMO
The objective of this study was to investigate the effect and composition of a standardized natural citrus extract (SNCE) on both broiler chickens' growth performances and intestinal microbiota. A total of 930 one-day-old males were randomly assigned to three dietary treatments: a control treatment (CTL) in which broiler chickens were fed with a standard diet and two citrus treatments in which broiler chickens were fed with the same standard diet supplemented with 250 ppm and 2,500 ppm of SNCE, respectively. Each dietary treatment was composed of 10 experimental units (pen) of 31 broiler chickens each. Growth performances such as feed consumption, body weight, and feed conversion ratio (FCR) were recorded weekly until day 42. Litter quality was also weekly recorded while mortality was daily recorded. One broiler chicken was randomly selected from each pen (10 chickens/group) and ceca samples were collected for microbiota analysis at day 7 and 42. Chromatographic methods were used to determine molecules that enter into the composition of the SNCE. Results from the characterization of SNCE allowed to identify pectic oligosaccharides (POS) as a major component of the SNCE. In addition, 35 secondary metabolites, including eriocitrin, hesperidin, and naringin, were identified. The experiment performed on broiler chickens showed that the final body weight of broiler chickens fed diets supplemented with SNCE was higher than those fed the CTL diets (P < 0.01). Broiler cecal microbiota was impacted by age (P < 0.01) but not by the dietary supplementation of SNCE. Results indicate that SNCE allowed enhancing chickens' performances without any modulation of the cecal microbiota of broiler chickens. The characterization of SNCE allowed to identify compounds such as eriocitrin, naringin, hesperidin, and POS. Thus, opening new horizons for a better understanding of the observed effect on broiler chickens' growth performances.
Citrus extracts are increasingly being used in animal nutrition to enhance animal growth performances. Most of the available studies indicate an effect of these extracts on microbiota. However, citrus extracts can vary a lot. Indeed, the composition of citrus extract depends on parameters such as the citrus species, the extraction methods, and the inclusion rate. This variation is very important to take into consideration before using a citrus extract. The objective here was to evaluate a commercially available standardized natural citrus extract in terms of composition and effect on broiler chickens' performances and microbiota. Results showed that standardized natural citrus extract positively affects the final weight of broilers, but no effect was observed on chickens' caecal microbiota. The characterization of the standardized natural citrus extract reveals pectic oligosaccharides as major compounds as well as 35 others molecules. Most of these compounds are well described for their beneficial effect on animals' performances and health. In conclusion, the standardized natural citrus extract showed beneficial effects on broilers' performances. These effects are not correlated with broilers microbiota modulation and may be explained by the composition of the product.
Assuntos
Hesperidina , Microbiota , Masculino , Animais , Galinhas , Hesperidina/farmacologia , Hesperidina/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Oligossacarídeos/farmacologia , Peso Corporal , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
Plant-derived phytocompounds are effective in treating a variety of ailments and disorders, the most common of which are bacterial infections in humans, which are a major public health concern. Flavonoids, one of the groups of phytocompounds, are known to have significant antimicrobial and anti-infective properties. Hence, the current study investigates the efficacy of the citrus flavonoid hesperidin methylchalcone (HMC) in addressing this major issue. The results of this study indicate that the anti-quorum sensing (anti-QS) action against Aeromonas hydrophila infections is exhibited with a decrease in biofilm development and virulence factors production through in vitro and in silico analyses. In addition, the qPCR findings indicate that HMC has antivirulence action on A. hydrophila by reducing the expression of QS-related virulence genes, including ahyR, ahyB, ahh1, aerA, and lip. Interestingly, HMC significantly rescued the A. hydrophila-infected zebrafish by reducing the internal colonization, demonstrating the in vivo anti-infective potential of HMC against A. hydrophila infection. Based on these results, this study recommends that HMC could be employed as a possible therapeutic agent to treat A. hydrophila-related infections in humans.
Assuntos
Chalconas , Hesperidina , Animais , Humanos , Chalconas/farmacologia , Hesperidina/farmacologia , Hesperidina/metabolismo , Aeromonas hydrophila , Peixe-Zebra , Flavonoides/farmacologia , Flavonoides/metabolismo , Biofilmes , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
The intestinal epithelium is a single-cell layer on the mucosal surface that absorbs food-derived nutrients and functions as a barrier that protects mucosal integrity. Hesperidin (hesperetin-7-rhamnoglucoside) is a flavanone glycoside composed of the flavanone hesperetin and the disaccharide rutinose, which has various physiological benefits, including antioxidative, anti-inflammatory, and antiallergic effects. Here, we used human intestinal Caco-2 cell monolayers to examine the effect of hesperidin on intestinal barrier function. Hesperidin-treated Caco-2 cell monolayers displayed enhanced intestinal barrier integrity, as indicated by an increase in transepithelial electrical resistance (TEER) and a decreased apparent permeability (Papp ) for fluorescein. Hesperidin elevated the mRNA and protein levels of occludin, MarvelD3, JAM-1, claudin-1, and claudin-4, which are encoded by tight junction (TJ)-related genes. Moreover, hesperidin significantly increased the phosphorylation of AMP-activated protein kinase (AMPK), indicating improved intestinal barrier function. Thus, our results suggest that hesperidin enhances intestinal barrier function by increasing the expression of TJ-related occludin, MarvelD3, JAM-1, and claudin-1 via AMPK activation in human intestinal Caco-2 cells.
Assuntos
Flavanonas , Hesperidina , Humanos , Células CACO-2 , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Junções Íntimas/metabolismo , Hesperidina/farmacologia , Hesperidina/metabolismo , Claudina-1/genética , Claudina-1/metabolismoRESUMO
Based on the adhesion and surface properties of Lactobacillus acidophilus NCFM, five common polyphenols in fruits and vegetables, including resveratrol, epicatechin, quercetin, hesperidin, and caffeic acid, were screened, and the reasons for resveratrol promoting adhesion were systematically explained. The results showed that resveratrol could significantly enhance NCFM adhesion to mucin (1.73 fold), followed by epicatechin (1.47 fold), caffeic acid (1.30 fold), and hesperidin (0.99 fold), while quercetin had a certain degree of inhibition (0.84 fold). The effects of these polyphenols on surface hydrophobicity and auto-aggregation of NCFM were consistent with adhesion results. Then, how resveratrol promotes NCFM adhesion was further explored. The results of the proteomic analysis showed that resveratrol changed the surface layer proteins of NCFM, involving 4 up-regulated proteins and 12 down-regulated proteins. In addition, resveratrol promoted the expression of mucin genes and the glycosylation of mucins on the HT-29 cell surface. Our results indicate that resveratrol changes the surface layer proteins of NCFM to modify surface properties and adhere to mucins. Meanwhile, resveratrol promotes expression and glycosylation of mucins in HT-29 cells. Our findings provide theoretical support for an in-depth explanation of the interaction among resveratrol, NCFM, and the HT-29 cells.
Assuntos
Catequina , Hesperidina , Humanos , Resveratrol/farmacologia , Resveratrol/metabolismo , Lactobacillus acidophilus/fisiologia , Aderência Bacteriana , Catequina/farmacologia , Hesperidina/metabolismo , Hesperidina/farmacologia , Proteômica , Quercetina/farmacologia , Quercetina/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Mucinas/metabolismoRESUMO
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Assuntos
Citrus , Flavanonas , Flavonas , Hesperidina , Antioxidantes/metabolismo , Citrus/química , Flavonoides/metabolismo , Hesperidina/metabolismoRESUMO
Objective To explore the effect and mechanism of hesperidin in treating the lung injury in the mouse model of respiratory syncytial virus (RSV)-induced bronchiolitis. Methods A mouse model of RSV-induced bronchiolitis was established,and 60 BALB/c mice were assigned into a control group,a model group,a low-dose hesperidin (18 mg/kg) group,a high-dose hesperidin (36 mg/kg) group,and a high-dose hesperidin (36 mg/kg)+Jagged1(1 mg/kg) group by random number table method,with 12 mice in each group. Corresponding doses of drugs were administrated for intervention,and the control group and model group were administrated with the same amount of saline.The bronchoalveolar lavage fluid (BALF) samples were collected and alveolar macrophages were isolated.ELISA was employed to detect the levels of interleukin (IL)-4,IL-6,tumor necrosis factor-α (TNF-α),and IL-10 in BALF,and flow cytometry to detect the M1/M2 polarization of macrophages.qRT-PCR and Western blotting were respectively conducted to detect the mRNA and protein levels of inducible nitric oxide synthase (iNOS),arginase 1 (Arg-1),Jagged1,and Notch1 in the lung tissue. Results Compared with the control group,the modeling of RSV-induced bronchiolitis elevated the IL-4,IL-6,and TNF-α levels,increased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and up-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.001).Meanwhile,the modeling lowered the IL-10 level,decreased the proportion of M2-type macrophages,and down-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Compared with the model group,low- and high-dose hesperidin lowered the IL-4,IL-6,TNF-α levels,decreased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and down-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.05).Moreover,hesperidin elevated the IL-10 level,increased the proportion of M2-type macrophages,and up-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Using recombinant Jagged1 protein to activate Notch1 signaling pathway can significantly attenuate the promotion of high-dose hesperidin on M2 macrophage polarization and amelioration of lung inflammation damage (all P<0.01). Conclusion Hesperidin may alleviate the lung inflammation damage in mice with RSV-induced bronchiolitis by inhibiting the Jagged1/Notch1 signaling pathway and promoting the M2-type polarization of macrophages.