Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Biol Chem ; 300(7): 107449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844132

RESUMO

Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.


Assuntos
Hialuronan Sintases , Ácido Hialurônico , Hialuronoglucosaminidase , Queratinócitos , Humanos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Epiderme/metabolismo , Células Cultivadas , Moléculas de Adesão Celular , Proteínas Ligadas por GPI
2.
Planta Med ; 90(10): 774-784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942031

RESUMO

Hyaluronic acid is composed of repeating sugar units, glucuronic acid and N-acetylglucosamine, which are often associated with increased tumor progression. Urtica dioica agglutinin is a potential component that exhibits a high affinity for binding to N-acetylglucosamine. This study aimed to investigate U. dioica Agglutinin's potential to inhibit the proliferation and migration of prostate cancer cells with high expression of hyaluronic acid through molecular docking and in vitro studies. The expression of hyaluronan synthase genes in prostate tissue and cell lines was checked by an in silico study, and the interaction between hyaluronic acid with both CD44 transmembrane glycoprotein and U. dioica agglutinin was analyzed through molecular docking. U. dioica Agglutinin's effect on cell viability (neutral red uptake assay), migration (scratch wound healing assays), and both CD44 and Nanog expression (quantitative real-time polymerase chain reaction) were assessed in vitro. The results showed that in prostate cancer cell lines, the PC3 cell line has the highest expression of hyaluronan synthase genes. U. dioica agglutinin exhibits an interaction of six specific residues on CD44 compared to hyaluronic acid's singular residue. While U. dioica agglutinin alone effectively reduced cell viability and wound closer (≥ 150 µg/mL), combining it with hyaluronic acid significantly shifted the effective concentration to a higher dose (≥ 350 µg/mL). These results, together with low Nanog and high CD44 gene expression, suggest that U. dioica agglutinin may impair the CD44-HA pathway in PC3 cells. This possibility is supported by U. dioica Agglutinin's ability to compete with hyaluronic acid for binding to CD44. Based on this, U. dioica agglutinin as a plant lectin shows promise in inhibiting cancer proliferation and migration by targeting its dependence on hyaluronic acid.


Assuntos
Movimento Celular , Proliferação de Células , Receptores de Hialuronatos , Ácido Hialurônico , Neoplasias da Próstata , Urtica dioica , Humanos , Ácido Hialurônico/farmacologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Urtica dioica/química , Linhagem Celular Tumoral , Receptores de Hialuronatos/metabolismo , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Aglutininas/farmacologia , Hialuronan Sintases/metabolismo , Células PC-3
3.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38727898

RESUMO

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Semaforina-3A , Animais , Diferenciação Celular/efeitos dos fármacos , Semaforina-3A/metabolismo , Condrogênese/efeitos dos fármacos , Camundongos , Condrócitos/metabolismo , Condrócitos/citologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Linhagem Celular , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Agrecanas/metabolismo , Agrecanas/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Glicosaminoglicanos/metabolismo , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética
4.
Cancer Sci ; 115(8): 2602-2616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816349

RESUMO

Glioma is the most common malignant tumor in the central nervous system, and it is crucial to uncover the factors that influence prognosis. In this study, we utilized Mfuzz to identify a gene set that showed a negative correlation with overall survival in patients with glioma. Gene Ontology (GO) enrichment analyses were then undertaken to gain insights into the functional characteristics and pathways associated with these genes. The expression distribution of Hyaluronan Synthase 2 (HAS2) was explored across multiple datasets, revealing its expression patterns. In vitro and in vivo experiments were carried out through gene knockdown and overexpression to validate the functionality of HAS2. Potential upstream transcription factors of HAS2 were predicted using transcriptional regulatory databases, and these predictions were experimentally validated using ChIP-PCR and dual-luciferase reporter gene assays. The results showed that elevated expression of HAS2 in glioma indicates poor prognosis. HAS2 was found to play a role in activating an antiferroptosis pathway in glioma cells. Inhibiting HAS2 significantly increased cellular sensitivity to ferroptosis-inducing agents. Finally, we determined that the oncogenic effect of HAS2 is mediated by the key receptor of the WNT pathway, FZD7.


Assuntos
Neoplasias Encefálicas , Ferroptose , Receptores Frizzled , Regulação Neoplásica da Expressão Gênica , Glioma , Hialuronan Sintases , Humanos , Ferroptose/genética , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Animais , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Camundongos , Prognóstico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Via de Sinalização Wnt/genética , Camundongos Nus , Masculino , Feminino
5.
Int J Biol Macromol ; 270(Pt 2): 132334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744368

RESUMO

Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.


Assuntos
Engenharia Genética , Ácido Hialurônico , Streptococcus , Ácido Hialurônico/biossíntese , Streptococcus/genética , Streptococcus/metabolismo , Engenharia Genética/métodos , Fermentação , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Vias Biossintéticas/genética
6.
Cell Signal ; 120: 111218, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734194

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant human brain tumor. Although comprehensive therapies, including chemotherapy and radiotherapy following surgery, have shown promise in prolonging survival, the prognosis for GBM patients remains poor, with an overall survival rate of only 14.6 months. Chemoresistance is a major obstacle to successful treatment and contributes to relapse and poor survival rates in glioma patients. Therefore, there is an urgent need for novel strategies to overcome chemoresistance and improve treatment outcomes for human glioma patients. Recent studies have shown that the tumor microenvironment plays a key role in chemoresistance. Our study demonstrates that upregulation of HAS2 and subsequent hyaluronan secretion promotes glioma cell proliferation, invasion, and chemoresistance in vitro and in vivo through the c-myc pathway. Targeting HAS2 sensitizes glioma cells to chemotherapeutic agents. Additionally, we found that hypoxia-inducible factor HIF1α regulates HAS2 expression. Together, our findings provide insights into the dysregulation of HAS2 and its role in chemoresistance and suggest potential therapeutic strategies for GBM.


Assuntos
Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Proto-Oncogênicas c-myc , Regulação para Cima , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismo
7.
Chem Biol Interact ; 396: 111045, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729283

RESUMO

Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED. PDGF isoforms are increased in orbital tissue of TED patients and enhance HA production. We aimed to study the effect of CsA on HA production and hyaluronan synthase (HAS1, 2 and 3) and hyaluronidase (HYAL1 and 2) mRNA expressions in orbital fibroblasts (OFs). Measurements were performed in the presence or absence of CsA (10 µM) in unstimulated or PDGF-BB (10 ng/ml) stimulated OFs. The HA production of TED OFs (n = 7) and NON-TED OFs (n = 6) were measured by ELISA. The levels of mRNA expressions were examined using RT-PCR. The proliferation rate and metabolic activity were measured by BrdU incorporation and MTT assays, respectively. Treatment with CsA resulted in an average 42% decrease in HA production of OFs (p < 0.0001). CsA decreased the expression levels of HAS2, HAS3 and HYAL2 (p = 0.005, p = 0.005 and p = 0.002, respectively.) PDGF-BB increased HA production (p < 0.001) and HAS2 expression (p = 0.004). CsA could reduce the PDGF-BB-stimulated HA production (p < 0.001) and HAS2 expression (p = 0.005) below the untreated level. In addition, CsA treatment caused a decrease in proliferation potential (p = 0.002) and metabolic activity (p < 0.0001). These findings point to the fact that CsA affects HA metabolism via HAS2, HAS3 and HYAL2 inhibition in OFs. In addition to its well characterized immunosuppressant properties, CsA's beneficial effect in TED may be related to its direct inhibitory effect on basal and growth factor stimulated HA production.


Assuntos
Becaplermina , Proliferação de Células , Ciclosporina , Fibroblastos , Glucuronosiltransferase , Oftalmopatia de Graves , Hialuronan Sintases , Ácido Hialurônico , Hialuronoglucosaminidase , Proteínas Proto-Oncogênicas c-sis , Ácido Hialurônico/biossíntese , Ácido Hialurônico/farmacologia , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ciclosporina/farmacologia , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Oftalmopatia de Graves/tratamento farmacológico , Células Cultivadas , Órbita/metabolismo , Órbita/efeitos dos fármacos , Órbita/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI
8.
Matrix Biol ; 129: 29-43, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518923

RESUMO

As the backbone of the extracellular matrix (ECM) and the perineuronal nets (PNNs), hyaluronic acid (HA) provides binding sites for proteoglycans and other ECM components. Although the pivotal of HA has been recognized in Alzheimer's disease (AD), few studies have addressed the relationship between AD pathology and HA synthases (HASs). Here, HASs in different regions of AD brains were screened in transcriptomic database and validated in AßPP/PS1 mice. We found that HAS1 was distributed along the axon and nucleus. Its transcripts were reduced in AD patients and AßPP/PS1 mice. Phosphorylated tau (p-tau) mediates AßPP-induced cytosolic-nuclear translocation of HAS1, and negatively regulated the stability, monoubiquitination, and oligomerization of HAS1, thus reduced the synthesis and release of HA. Furthermore, non-ubiquitinated HAS1 mutant lost its enzyme activity, and translocated from the cytosol into the nucleus, forming nuclear speckles (NS). Unlike the splicing-related NS, less than 1 % of the non-ubiquitinated HAS1 co-localized with SRRM2, proving the regulatory role of HAS1 in gene transcription, indirectly. Thus, differentially expressed genes (DEGs) related to both non-ubiquitinated HAS1 mutant and AD were screened using transcriptomic datasets. Thirty-nine DEGs were identified, with 64.1 % (25/39) showing consistent results in both datasets. Together, we unearthed an important function of the AßPP-p-tau-HAS1 axis in microenvironment remodeling and gene transcription during AD progression, involving the ubiquitin-proteasome, lysosome, and NS systems.


Assuntos
Doença de Alzheimer , Núcleo Celular , Hialuronan Sintases , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Transcrição Gênica , Fosforilação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos Transgênicos , Ubiquitinação
9.
Phytomedicine ; 128: 155456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537446

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE: To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN: Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS: Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS: Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1ß, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS: Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.


Assuntos
Berberina , Modelos Animais de Doenças , Hialuronan Sintases , Inflamação , Camundongos Endogâmicos ICR , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Berberina/farmacologia , Feminino , Animais , Humanos , Hialuronan Sintases/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Ácido Hialurônico , Adulto , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Desidroepiandrosterona/farmacologia , Ovário/efeitos dos fármacos , Lipopolissacarídeos , Citocinas/metabolismo
10.
Front Endocrinol (Lausanne) ; 15: 1274376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524634

RESUMO

The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.


Assuntos
Células do Cúmulo , Sêmen , Humanos , Masculino , Feminino , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hialuronan Sintases/metabolismo
11.
J Pineal Res ; 76(2): e12940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402581

RESUMO

Hyaluronic acid (HA) is a glycosaminoglycan and the main component of the extracellular matrix (ECM), which has been reported to interact with its receptor CD44 to play critical roles in the self-renewal and maintenance of cancer stem cells (CSCs) of multiple malignancies. Melatonin is a neuroendocrine hormone with pleiotropic antitumor properties. However, whether melatonin could regulate HA accumulation in the ECM to modulate the stemness of head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we found that melatonin suppressed CSC-related markers, such as CD44, of HNSCC cells and decreased the tumor-initiating frequency of CSCs in vivo. In addition, melatonin modulated HA synthesis of HNSCC cells by downregulating the expression of hyaluronan synthase 3 (HAS3). Further study showed that the Fos-like 1 (FOSL1)/HAS3 axis mediated the inhibitory effects of melatonin on HA accumulation and stemness of HNSCC in a receptor-independent manner. Taken together, melatonin modulated HA synthesis through the FOSL1/HAS3 axis to inhibit the stemness of HNSCC cells, which elucidates the effect of melatonin on the ECM and provides a novel perspective on melatonin in HNSCC treatment.


Assuntos
Hialuronan Sintases , Melatonina , Proteínas Proto-Oncogênicas c-fos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Hialuronan Sintases/metabolismo , Melatonina/farmacologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
12.
Sci Rep ; 14(1): 2797, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307876

RESUMO

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Camundongos , Perfilação da Expressão Gênica , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , RNA Interferente Pequeno
13.
Biochimie ; 220: 58-66, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158036

RESUMO

Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.


Assuntos
Ácido Hialurônico , Ratos-Toupeira , Ácido Hialurônico/metabolismo , Animais , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Humanos , Transdução de Sinais , Receptores de Hialuronatos/metabolismo
14.
Oncogene ; 42(44): 3221-3235, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704784

RESUMO

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácido Hialurônico/metabolismo , Doxorrubicina/farmacologia , Hialuronan Sintases/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores de Hialuronatos/metabolismo , Microambiente Tumoral
15.
Adv Biol (Weinh) ; 7(12): e2300168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615259

RESUMO

Hyaluronan (HA) is one of the major components of the extracellular matrix in tumor tissue. Recent reports have made it clear that the balance of HA synthesis and degradation is critical for tumor progression. HA is synthesized on the cytoplasmic surface of the plasma membrane by hyaluronan synthases (HAS) and extruded into the extracellular space. Excessive HA production in cancer is associated with enhanced HA degradation in the tumor microenvironment, leading to the accumulation of HA fragments with small molecular weight. These perturbations in both HA synthesis and degradation may play important roles in tumor progression. Recently, it has become increasingly clear that small HA fragments can induce a variety of biological events, such as angiogenesis, cancer-promoting inflammation, and tumor-associated immune suppression. Progression of urologic malignancies, particularly of prostate and bladder cancers, as well as of certain types of kidney cancer show markedly perturbed metabolism of tumor-associated HA. This review highlights the recent research findings regarding HA metabolism in tumor microenvironments with a special focus on urologic cancers. It also will discuss the potential implications of these findings for the development of novel therapeutic interventions for the treatment of prostate, bladder, and kidney cancers.


Assuntos
Ácido Hialurônico , Neoplasias Urológicas , Masculino , Humanos , Ácido Hialurônico/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Neoplasias Urológicas/metabolismo , Inflamação/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral
16.
Nature ; 621(7977): 196-205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612507

RESUMO

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Assuntos
Envelhecimento Saudável , Hialuronan Sintases , Ácido Hialurônico , Longevidade , Ratos-Toupeira , Animais , Camundongos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Transgênicos , Ratos-Toupeira/genética , Longevidade/genética , Longevidade/imunologia , Longevidade/fisiologia , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Transgenes/genética , Transgenes/fisiologia , Transcriptoma , Neoplasias/genética , Neoplasias/prevenção & controle , Estresse Oxidativo , Gerociência , Rejuvenescimento/fisiologia
17.
Adv Mater ; 35(44): e2303299, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37459592

RESUMO

Restoring joint homeostasis is crucial for relieving osteoarthritis (OA). Current strategies are limited to unilateral efforts in joint lubrication, inhibition of inflammation, free radicals scavenging, and cartilage regeneration. Herein, by modifying molybdenum disulfide (MoS2 ) with Mg2+ -doped polydopamine and coating with polysulfobetaines, a dual-bionic photothermal nanozyme (MPMP) is constructed to mimic antioxidases/hyaluronan synthase for OA therapy. Photothermally enhanced lubrication lowers the coefficient of friction (0.028) in the early stage of OA treatment. The antioxidases-mimicking properties of MPMP nanozyme contribute to eliminating reactive oxygen and nitrogen species (ROS/RNS) (over 90% of scavenging ratio for H2 O2 /·OH/O· 2 - /DPPH/ABTS+ ) and supplying O2 . With NIR irradiation, the MPMP nanozyme triggers thermogenesis (upregulating HSP70 expression) and Mg2+ release, which promotes the chondrogenesis in inflammatory conditions by deactivating NF-κB/IL-17 signaling pathways and enhancing MAPK signaling pathway. Benefiting from HSP70 and Mg2+ , MPMP-NIR shows HAS-mimicking activity to increase the intracellular (twofold) and extracellular (3.12-fold) HA production. Therefore, MPMP-NIR demonstrates superior spatiotemporally therapeutic effect on OA in mice model, in terms of osteophytes (83.41% of reduction), OARSI scores (88.57% of reduction), and ACAN expression (2.70-fold of increment). Hence, insights into dual-bionic nanozymes can be a promising strategy for OA therapy or other inflammation-related diseases.


Assuntos
Osteoartrite , Terapia Fototérmica , Camundongos , Animais , Hialuronan Sintases/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Med ; 52(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232339

RESUMO

Osteoarthritis (OA) is a progressive joint disorder, which is principally characterized by the degeneration and destruction of articular cartilage. The cytoskeleton is a vital structure that maintains the morphology and function of chondrocytes, and its destruction is a crucial risk factor leading to chondrocyte degeneration and OA. Hyaluronan synthase­2 (HAS­2) is a key enzyme in synthesizing hyaluronic acid (HA) in vivo. The synthesis of high molecular weight HA catalyzed by HAS­2 serves a vital role in joint movement and homeostasis; however, it is unclear what important role HAS­2 plays in maintaining chondrocyte cytoskeleton morphology and in cartilage degeneration. The present study downregulated the expression of HAS­2 by employing 4­methylumbelliferone (4­MU) and RNA interference. In vitro experiments, including reverse transcription­quantitative PCR, western blotting, laser scanning confocal microscopy and flow cytometry were subsequently performed. The results revealed that downregulation of HAS­2 could activate the RhoA/ROCK signaling pathway, cause morphological abnormalities, decrease expression of the chondrocyte cytoskeleton proteins and promote chondrocyte apoptosis. In vivo experiments, including immunohistochemistry and Mankin's scoring, were performed to verify the effect of HAS­2 on the chondrocyte cytoskeleton, and it was revealed that inhibition of HAS­2 could cause cartilage degeneration. In conclusion, the present results revealed that downregulation of HAS­2 could activate the RhoA/ROCK pathway, cause abnormal morphology and decrease chondrocyte cytoskeleton protein expression, leading to changes in the signal transduction and biomechanical properties of chondrocytes, promotion of chondrocyte apoptosis and the induction of cartilage degeneration. Moreover, the clinical application of 4­MU may cause cartilage degeneration. Therefore, targeting HAS­2 may provide a novel therapeutic strategy for delaying chondrocyte degeneration, and the early prevention and treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Regulação para Baixo , Hialuronan Sintases/metabolismo , Osteoartrite/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais
19.
Endocrine ; 82(1): 87-95, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37231239

RESUMO

PURPOSE: The aim of this study was to investigate the microRNA (miRNA) expression profile in peripheral blood mononuclear cells (PBMC) of thyroid-associated ophthalmopathy (TAO) patients and to explore the molecular mechanisms of MicroRNA-376b (miR-376b) in the pathogenesis of TAO. METHODS: PBMCs from TAO patients and healthy controls were analyzed by miRNA microarray to screen for the significantly differentially expressed miRNAs. The miR-376b expression in PBMCs were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). The downstream target of miR-376b was screened by online bioinformatics, and detected by qRT-PCR and Western blotting. RESULTS: Compared with normal controls, 26 miRNAs were significantly different in PBMCs of TAO patients (14 miRNAs were down-regulated and 12 miRNAs were up-regulated). Among them, miR-376b expression was significantly decreased in PBMCs from TAO patients compared to healthy controls. Spearman correlation analysis revealed that miR-376b expression in PBMCs was significantly negatively correlated with free triiodothyronine (FT3), and positively correlated with thyroid-stimulating hormone (TSH). MiR-376b expression was obviously reduced in 6T-CEM cells after triiodothyronine (T3) stimulation compared to controls. MiR-376b mimics significantly decreased hyaluronan synthase 2 (HAS2) protein expression and the mRNA expression of intercellular cell adhesion molecule-1 (ICAM1) and tumor necrosis factor-α (TNF-α) in 6T-CEM cells, whereas miR-376b inhibitors markedly elevated HAS2 protein expression and gene expression of ICAM1 and TNF-α. CONCLUSIONS: MiR-376b expression in PBMCs was significantly decreased in PBMCs from TAO patients compared with the healthy controls. MiR-376b, regulated by T3, could modulate the expression of HAS2 and inflammatory factors. We speculate that miR-376b may be involved in the pathogenesis of TAO patients by regulating the expression of HAS2 and inflammatory factors.


Assuntos
Oftalmopatia de Graves , MicroRNAs , Humanos , Leucócitos Mononucleares/metabolismo , Hialuronan Sintases/metabolismo , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tri-Iodotironina/metabolismo , MicroRNAs/metabolismo
20.
Methods Mol Biol ; 2619: 53-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662461

RESUMO

Hyaluronan (HA) is the most abundant glycosaminoglycan in the extracellular matrix, and its deposition is strictly related to changes in cellular behaviors, such as cell migration, proliferation, and adhesion. Pericellular HA is abundant in a variety of cell types, and its amount could reflect specific conditions, thus suggesting a particular cellular status.Particle exclusion assay is a useful tool to visualize pericellular matrices with a high HA content, simply employing microscope image analysis. This approach is quick and allows to visualize the presence of a clear pericellular region around single cells, where fixed red blood cells are excluded if the pericellular matrix has been deposited.


Assuntos
Matriz Extracelular , Ácido Hialurônico , Ácido Hialurônico/metabolismo , Matriz Extracelular/metabolismo , Movimento Celular , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA