Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Water Sci Technol ; 76(1-2): 1-14, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708605

RESUMO

This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Rios/química , China , Monitoramento Ambiental/história , História do Século XX , História do Século XXI , Hidrologia/história
5.
Ann Sci ; 72(4): 517-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221837

RESUMO

Although the historical reputation of Gottfried Wilhelm Leibniz (1646-1716) largely rests on his philosophical and mathematical work, it is widely known that he made important contributions to many of the emerging but still inchoate branches of natural science of his day. Among the many scientific papers Leibniz published during his lifetime are ones on the nascent science we now know as hydrology. While Leibniz's other scientific work has become of increasing interest to scholars in recent years, his thinking about hydrology has been neglected, despite being relatively broad in extent, including as it does papers on the 'raising of vapours' and the formation of ice, as well as the separation of salt and fresh water. That list can now be extended still further following the discovery of a previously unpublished letter of Leibniz's on the causes of the devastating Lombardy flood of October and November 1705. This letter, which will be the focus of our paper, reveals the depth of Leibniz's understanding of key hydrological processes. In it, he considers various mechanisms for the flood, such as heavy rains on high ground, underwater earthquakes, and a mountain collapse. Over the course of the paper we examine each of these mechanisms in depth, and show that Leibniz was in the vanguard of hydrological thinking. We also show that the letter contains one of the first scholarly attempts to apply aspects of the still-forming notion of the hydrological cycle to account for a flood event.


Assuntos
Inundações/história , Hidrologia/história , Hidrologia/métodos , Correspondência como Assunto , Ecossistema , Alemanha , História do Século XVII , História do Século XVIII , Itália , Chuva/química , Rios/química
7.
Environ Sci Pollut Res Int ; 22(4): 3032-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231740

RESUMO

Poyang Lake is a unique wetland system that has evolved in response to natural seasonal fluctuations in water levels. To better characterize the response of water quality to hydrological variation, historical data were analyzed in combination with dissolved organic matter (DOM) fluorescence samplings conducted in situ. Historical data showed that long-term changes in water quality are mainly controlled by the sewage inputs to Poyang Lake. Monthly changes in water quality recorded during 2008 and 2012 suggest that water level may be the most important factor for water quality during a hydrological year. DOM fluorescence samples were identified as three humic-like components (C1, C2, and C3) and a protein-like component (C4). These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. Principal component analysis (PCA) showed higher C1 and C2 signals during a normal season than the wet season, whereas C3 was lower, and C4 was higher in the dry season than in the wet or normal seasons. From the open lake to the Yangtze River mouth, increased C3 component carried by backflows of the Yangtze River to the lake resulted in these unique variations of PCA factor 2 scores during September. These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. DOM fluorescence could be a proxy for capturing rapid changes in water quality and thereby provide an early warning signal for the quality of water supply.


Assuntos
Substâncias Húmicas/análise , Lagos/química , Qualidade da Água/normas , Abastecimento de Água/normas , China , Fluorescência , História do Século XXI , Substâncias Húmicas/história , Hidrologia/história , Hidrologia/métodos , Análise de Componente Principal , Estações do Ano , Abastecimento de Água/história
8.
PLoS One ; 9(9): e108194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251589

RESUMO

The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.


Assuntos
Engenharia/história , Hidrologia/história , Ecossistema , Engenharia/métodos , Europa (Continente) , História Medieval , Hidrologia/métodos , Rios , Navios , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA