Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522709

RESUMO

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Assuntos
Atropa belladonna , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista , Nitrogênio , Tropanos , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiões Promotoras Genéticas
2.
Nat Commun ; 14(1): 8457, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114555

RESUMO

Hyoscyamine and scopolamine (HS), two valuable tropane alkaloids of significant medicinal importance, are found in multiple distantly related lineages within the Solanaceae family. Here we sequence the genomes of three representative species that produce HS from these lineages, and one species that does not produce HS. Our analysis reveals a shared biosynthetic pathway responsible for HS production in the three HS-producing species. We observe a high level of gene collinearity related to HS synthesis across the family in both types of species. By introducing gain-of-function and loss-of-function mutations at key sites, we confirm the reduced/lost or re-activated functions of critical genes involved in HS synthesis in both types of species, respectively. These findings indicate independent and repeated losses of the HS biosynthesis pathway since its origin in the ancestral lineage. Our results hold promise for potential future applications in the artificial engineering of HS biosynthesis in Solanaceae crops.


Assuntos
Hiosciamina , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Vias Biossintéticas/genética , Tropanos/metabolismo , Escopolamina/metabolismo , Hiosciamina/genética , Hiosciamina/análise , Hiosciamina/metabolismo
3.
Nat Commun ; 14(1): 1446, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922496

RESUMO

Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.


Assuntos
Alcaloides , Atropa belladonna , Hiosciamina , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Hiosciamina/genética , Hiosciamina/metabolismo , Tropanos/metabolismo , Escopolamina/metabolismo , Atropa belladonna/genética , Atropa belladonna/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 39(1): 52-8, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24754168

RESUMO

Atropa belladonna is a medicinal plant and main commercial source of tropane alkaloids (TAs) including scopolamine and hyoscyamine, which are anticholine drugs widely used clinically. Based on the high throughput transcriptome sequencing results, the digital expression patterns of UniGenes representing 9 structural genes (ODC, ADC, AIH, CPA, SPDS, PMT, CYP80F1, H6H, TRII) involved in TAs biosynthesis were constructed, and simultaneously expression analysis of 4 released genes in NCBI (PMT, CYP80F1, H6H, TRII) for verification was performed using qPCR, as well as the TAs contents detection in 8 different tissues. Digital expression patterns results suggested that the 4 genes including ODC, ADC, AIH and CPA involved in the upstream pathway of TAs, and the 2 branch pathway genes including SPDS and TRII were found to be expressed in all the detected tissues with high expression level in secondary root. While the 3 TAs-pathway-specific genes including PMT, CYP80F1, H6H were only expressed in secondary roots and primary roots, mainly in secondary roots. The qPCR detection results of PMT, CYP80F1 and H6H were consistent with the digital expression patterns, but their expression levels in primary root were too low to be detected. The highest content of hyoscyamine was found in tender stems (3.364 mg x g(-1)), followed by tender leaves (1.526 mg x g(-1)), roots (1.598 mg x g(-1)), young fruits (1.271 mg x g(-1)) and fruit sepals (1.413 mg x g(-1)). The highest content of scopolamine was detected in fruit sepals (1.003 mg x g(-1)), then followed by tender stems (0.600 mg x g(-1)) and tender leaves (0.601 mg x g(-1)). Both old stems and old leaves had the lowest content of hyoscyamine and scopolamine. The gene expression profile and TAs accumulation indicated that TAs in Atropa belladonna were mainly biosynthesized in secondary root, and then transported and deposited in tender aerial parts. Screening Atropa belladonna secondary root transcriptome database will facilitate unveiling the unknown enzymatic reactions and the mechanisms of transcriptional control.


Assuntos
Alcaloides/biossíntese , Alcaloides/genética , Atropa belladonna/genética , Atropa belladonna/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Tropanos/metabolismo , Alcaloides/metabolismo , Hiosciamina/genética , Hiosciamina/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Escopolamina/metabolismo
5.
Plant Physiol Biochem ; 70: 188-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786817

RESUMO

A cDNA encoding hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), a bifunctional enzyme catalyzing the last two steps in the scopolamine biosynthetic pathway, was isolated from Hyoscyamus senecionis, a medicinal plant endemic to the Iranian plateau. Expression analysis indicates that Hsh6h is expressed in all tested organs of H. senecionis including roots, rhizomes, leaves, stems and flowers unlike the other tropane alkaloid producing species. In parallel to this, in leaves, levels of scopolamine, the product of H6H, were higher than the substrate hyoscyamine. These data suggest that not only does the conversion of hyoscyamine to scopolamine take place in the root, followed by translocation to aerial parts, but also accumulated hyoscyamine in the aerial parts may be converted to scopolamine by activity of HsH6H. Analysis of expression profiles of putrescine N-methyltransferase and tropinone reductase I and II genes also indicates the organ-independent expression of these genes. Here we also introduce H. senecionis as an important tropane alkaloid producing species with its thick underground parts as a source of hyoscyamine, while its leaves can be considered as a source of scopolamine.


Assuntos
Genes de Plantas , Hiosciamina/metabolismo , Hyoscyamus/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Estruturas Vegetais/metabolismo , Escopolamina/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Transporte Biológico , DNA Complementar , Expressão Gênica , Hiosciamina/genética , Hyoscyamus/genética , Irã (Geográfico) , Redes e Vias Metabólicas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Plantas Medicinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA