Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 22(8): 1368-1370, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33215811

RESUMO

The tropane alkaloids (TAs) hyoscyamine and scopolamine function as acetylcholine receptor antagonists and are used clinically as parasympatholytics to treat neuromuscular disorders in humans. While TAs are synthesized in a small subset of plant families, these specialized metabolites are only accumulated in limited quantities in plant organs. The complex chemical structures of these compounds make their industrial production by chemical synthesis very challenging, Therefore, the supply of these TAs still relies on intensive farming of Duboisia shrubs in tropical countries. Many adverse factors such as climate fluctuations and pandemics can thus influence annual world production. Based on the landmark microbial production of the antimalarial semi-synthetic artemisinin, the Smolke group recently developed a yeast cell factory capable of de novo synthesizing hyoscyamine and scopolamine, thus paving the way for an alternative production of these compounds.


Assuntos
Antagonistas Colinérgicos/metabolismo , Duboisia/química , Hiosciamina/biossíntese , Escopolamina/metabolismo , Antagonistas Colinérgicos/química , Duboisia/metabolismo , Humanos , Hiosciamina/química , Estrutura Molecular , Escopolamina/química
2.
J Am Chem Soc ; 141(2): 1062-1066, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30545219

RESUMO

Hyoscyamine 6ß-hydroxylase (H6H) is an αKG-dependent nonheme iron oxidase that catalyzes the oxidation of hyoscyamine to scopolamine via two separate reactions: hydroxylation followed by oxidative cyclization. Both of these reactions are expected to involve H atom abstraction from each of two adjacent carbon centers (C6 vs C7) in the substrate. During hydroxylation, there is a roughly 85:1 preference for H atom abstraction from C6 versus C7; however, this inverts to a 1:16 preference during cyclization. Furthermore, 18O incorporation experiments in the presence of deuterated substrate are consistent with the catalytic iron(IV)-oxo complex being able to support the coordination of an additional ligand during hydroxylation. These observations suggest that subtle differences in the substrate binding configuration can have significant consequences for the catalytic cycle of H6H.


Assuntos
Hidrogênio/química , Hiosciamina/química , Oxigenases de Função Mista/química , Catálise , Complexos de Coordenação/química , Ciclização , Hidroxilação , Ferro/química , Estrutura Molecular
3.
Phytochemistry ; 131: 44-56, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27567452

RESUMO

Duboisia species, which belong to the family of Solanaceae, are commercially cultivated in large scale, as they are main source of the pharmaceutically-used active compound scopolamine. In this study, 1H NMR-based metabolite profiling linking primary with secondary metabolism and additional quantification via HPCL-MS with special focus on the tropane alkaloids were applied to compare leaf and root extracts of three wild types and two hybrids of Duboisia myoporoides and D. leichhardtii at different developmental stages grown under controlled conditions in climate chambers and under agricultural field plantation. Based on the leaf extracts, a clear distinction between the Duboisia hybrids and the wild types Duboisia myoporoides and D. leichhardtii using principal component analysis of 1H NMR data was observed. The average content in scopolamine in the hybrids of Duboisia cultivated in climate chambers increased significantly from month 3-6 after potting of the rooted cuttings, however not so for the examined wild types. The Duboisia hybrids grown in climate chambers showed higher growth and contained more sugars and amino acids than Duboisia hybrids grown in the field, which in contrast showed an enhanced flux towards tropane alkaloids as well as flavonoids. For a more detailed analysis of tropane alkaloids, an appropriate HPLC-MS method was developed and validated. The measurements revealed large differences in the alkaloid pattern within the different genotypes under investigation, especially regarding the last enzymatic step, the conversion from hyoscamine to scopolamine by the hyoscyamine 6ß-hydroxylase. Scopolamine was found in highest concentrations in Duboisia hybrids (20.04 ± 4.05 and 17.82 ± 3.52 mg/g dry wt) followed by Duboisia myoporoides (12.71 ± 2.55 mg/g dry wt), both showing a high selectivity for scopolamine in contrast to Duboisia leichhardtii (3.38 ± 0.59 and 5.09 ± 1.24 mg/g dry wt) with hyoscyamine being the predominant alkaloid.


Assuntos
Duboisia , Hiosciamina/química , Alcaloides/química , Cromatografia Líquida de Alta Pressão , Duboisia/química , Duboisia/genética , Duboisia/crescimento & desenvolvimento , Hiosciamina/isolamento & purificação , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Escopolamina/análise , Escopolamina/química , Tropanos/química
4.
Chirality ; 28(1): 49-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26527388

RESUMO

Rapid and simple isocratic high-performance liquid chromatographic methods with UV detection were developed and validated for the direct resolution of racemic mixtures of hyoscyamine sulfate and zopiclone. The method involved the use of αl -acid glycoprotein (AGP) as chiral stationary phase. The stereochemical separation factor (ά) and the stereochemical resolution factor (Rs ) obtained were 1.29 and 1.60 for hyoscyamine sulfate and 1.47 and 2.45 for zopiclone, respectively. The method was used for determination of chiral switching (eutomer) isomers: S-hyoscyamine sulfate and eszopiclone. Several mobile phase parameters were investigated for controlling enantioselective retention and resolution on the chiral AGP column. The influence of mobile phase, concentration and type of uncharged organic modifier, ionic strength, and column temperature on enantioselectivity were studied. Calibration curves were linear in the ranges of 1-10 µg mL(-1) and 0.5-5 µg mL(-1) for S-hyoscyamine sulfate and eszopiclone, respectively. The method is specific and sensitive, with lower limits of detection and quantifications of 0.156, 0.515 and 0.106, 0.349 for S-hyoscyamine sulfate and eszopiclone, respectively. The method was used to identify quantitatively the enantiomers profile of the racemic mixtures of the studied drugs in their pharmaceutical preparations. Thermodynamic studies were performed to calculate the enthalpic ΔH and entropic ΔS terms. The results showed that enantiomer separation of the studied drugs were an enthalpic process.


Assuntos
Compostos Azabicíclicos/química , Hiosciamina/química , Indicadores e Reagentes/química , Piperazinas/química , Cromatografia Líquida de Alta Pressão , Estereoisomerismo , Termodinâmica
5.
Phytochemistry ; 116: 94-103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25823585

RESUMO

The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected.


Assuntos
Alcaloides/metabolismo , Datura/química , Tropanos/metabolismo , Alcaloides/química , Vias Biossintéticas , Datura/genética , Cromatografia Gasosa-Espectrometria de Massas , Hiosciamina/análise , Hiosciamina/química , Tropanos/análise , Tropanos/química
6.
Yao Xue Xue Bao ; 50(10): 1346-55, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26837185

RESUMO

Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering.


Assuntos
Datura/enzimologia , Oxigenases de Função Mista/genética , Escopolamina/química , Clonagem Molecular , DNA Complementar , Datura/genética , Escherichia coli , Hiosciamina/química , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA