Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692012

RESUMO

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Dieta Hiperlipídica , Camundongos Knockout , Hipernutrição , Animais , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Hipernutrição/metabolismo , Hipernutrição/genética , Camundongos , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Metabolismo Energético/genética , Deleção de Genes , Proliferação de Células , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
2.
J Nutr Biochem ; 110: 109119, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933021

RESUMO

Overnutrition-induced obesity and metabolic dysregulation are considered major risk factors contributing to breast cancer. The origin of both obesity and breast cancer can retrospect to early development in human lifespan. Genistein (GE), a natural isoflavone enriched in soybean products, has been proposed to associate with a lower risk of breast cancer and various metabolic disorders. Our study aimed to determine the effects of maternal exposure to soybean dietary GE on prevention of overnutrition-induced breast cancer later in life and explore potential mechanisms in different mouse models. Our results showed that maternal dietary GE treatment improved offspring metabolic functions by significantly attenuating high-fat diet-induced body fat accumulation, lipid panel abnormalities and glucose intolerance in mice offspring. Importantly, maternal dietary GE exposure effectively delayed high-fat diet-simulated mammary tumor development in female offspring. Mechanistically, we found that maternal dietary GE may exert its chemopreventive effects through affecting essential regulatory gene expression in control of metabolism, inflammation and tumor development via, at least in part, regulation of offspring gut microbiome, bacterial metabolites and epigenetic profiles. Altogether, our findings indicate that maternal GE consumption is an effective intervention approach leading to early-life prevention of obesity-related metabolic disorders and breast cancer later in life through dynamically influencing the interplay between early-life gut microbiota, key microbial metabolite profiles and offspring epigenome.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Neoplasias , Hipernutrição , Humanos , Camundongos , Feminino , Animais , Glycine max , Epigênese Genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipernutrição/genética , Genisteína/farmacologia , Doenças Metabólicas/genética , Neoplasias/genética
3.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879284

RESUMO

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Modelos Animais de Doenças , Jejum/psicologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hipernutrição/genética , Hipernutrição/fisiopatologia , Hipernutrição/psicologia , Pró-Opiomelanocortina/genética , Resposta de Saciedade , Transdução de Sinais , Aumento de Peso
4.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828259

RESUMO

Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.


Assuntos
Doença Crônica , Metilação de DNA/fisiologia , Doenças Metabólicas/genética , Obesidade Materna/genética , Efeitos Tardios da Exposição Pré-Natal , Animais , Suscetibilidade a Doenças , Feminino , Desenvolvimento Fetal/genética , Humanos , Recém-Nascido , Masculino , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Hipernutrição/complicações , Hipernutrição/genética , Hipernutrição/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fatores de Risco
5.
Am J Physiol Endocrinol Metab ; 321(5): E702-E713, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632797

RESUMO

In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.


Assuntos
Adipocinas/fisiologia , Tecido Adiposo/patologia , Inflamação/genética , Fenômenos Fisiológicos da Nutrição/genética , Adipogenia/genética , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia , Gravidez
6.
IUBMB Life ; 73(10): 1210-1221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34184397

RESUMO

Pathological states in the early life environment of mammalian offspring, including maternal obesity and intrauterine overnutrition, can induce obesity and metabolic disorder later in life. Leptin resistance caused by upregulation of Socs3 in the hypothalamus of offspring was believed to be the main mechanism of this effect. In this study, obese mother (OM) and lean mother (LM) models were generated by feeding C57BL/6N female mice a high-fat diet or standard lean diet, respectively. Additionally, an obese mother with intervention (OMI) model was generated by injecting the high-fat diet group with Socs3-shRNA lentivirus during early pregnancy. The offspring of the groups was correspondingly named OM-F1 , LM-F1 , and OMI-F1 , representing progeny mouse models of different early life environments. The offspring were fed a high-fat diet to test their propensity for obesity. The body weight, food intake and fat accumulation were higher, while glucose intolerance and insulin resistance were worse in the OM-F1 group than LM-F1 group. By contrast, the obesity phenotype, hyperphagia and metabolic disorder were alleviated in the OMI-F1 group compared with the OM-F1 group. The mechanism was identified that downregulation of hypothalamic SOCS3 resulted in an increased level of p-STAT3 and p-JAK2, which ameliorated the leptin resistance and restored the lean expression of appetite regulatory genes (Pomc and Agrp) in hypothalamus of OMI-F1 group. Taken together, these results indicate that reducing maternal Socs3 expression during pregnancy can attenuate obesity caused by the early life environment in mice, which may inspire therapies that enable obese mothers to bear metabolically healthy children.


Assuntos
Obesidade Materna/genética , Hipernutrição/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tecido Adiposo , Animais , Animais Recém-Nascidos , Apetite/genética , Peso Corporal/genética , Modelos Animais de Doenças , Regulação para Baixo , Ingestão de Alimentos , Feminino , Técnicas de Silenciamento de Genes , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hipernutrição/complicações , Gravidez
7.
Artigo em Inglês | MEDLINE | ID: mdl-33865538

RESUMO

Using a rabbit model, we investigated whether maternal intake of a high-fat and high-carbohydrate diet (HFCD) before and during pregnancy induces an increase in micronuclei frequency and oxidative stress in offspring during adulthood. Female rabbits received a standard diet (SD) or HFCD for two months before mating and during gestation. The offspring from both groups were nursed by foster mothers fed SD until postnatal day 35. After weaning, all the animals received SD until postnatal day 440. At postnatal day 370, the frequency of micronuclei in peripheral blood reticulocytes (MN-RETs) increased in the male offspring from HFCD-fed mothers compared with the male offspring from SD-fed mothers. Additionally, fasting serum glucose increased in the offspring from HFCD-fed mothers compared with the offspring from SD-fed mothers. At postnatal day 440, the offspring rabbits were challenged with HFCD or continued with SD for 30 days. There was an increase in MN-RET frequency in the male rabbits from HFCD-fed mothers, independent of the type of challenging diet consumed during adulthood. The challenge induced changes in serum cholesterol, LDL and HDL that were influenced by the maternal diet and offspring sex. We measured malondialdehyde in the liver of rabbits as an oxidative stress marker after diet challenge. Oxidative stress in the liver only increased in the female offspring from HFCD-fed mothers who were also challenged with this same diet. The data indicate that maternal overnutrition before and during pregnancy is able to promote different effects depending on the sex of the animals, with chromosomal instability in male offspring and oxidative stress and hypercholesterolemia in female offspring. Our data might be important in the understanding of chronic diseases that develop in adulthood due to in utero exposure to maternal diet.


Assuntos
Dano ao DNA , Hipernutrição/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Hipernutrição/complicações , Hipernutrição/patologia , Estresse Oxidativo/fisiologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Coelhos , Caracteres Sexuais
8.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761312

RESUMO

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Assuntos
Comportamento Alimentar/fisiologia , Córtex Insular/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Hipernutrição/etiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Córtex Insular/efeitos dos fármacos , Córtex Insular/metabolismo , Córtex Insular/patologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia
9.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672754

RESUMO

A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Gluconeogênese/genética , Insulina/metabolismo , Hipernutrição/genética , Hipernutrição/microbiologia , Transdução de Sinais , Animais , Humanos , Hipernutrição/sangue
10.
FEBS J ; 288(12): 3784-3798, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32654397

RESUMO

The pervasion of three daily meals and snacks is a relatively new introduction to our shared experience and is coincident with an epidemic rise in obesity and cardiometabolic disorders of overnutrition. The past two decades have yielded convincing evidence regarding the adaptive, protective effects of calorie restriction (CR) and intermittent fasting (IF) against cardiometabolic, neurodegenerative, proteostatic, and inflammatory diseases. Yet, durable adherence to intensive lifestyle changes is rarely attainable. New evidence now demonstrates that restricting carbohydrate entry into the hepatocyte by itself mimics several key signaling responses and physiological outcomes of IF and CR. This discovery raises the intriguing proposition that targeting hepatocyte carbohydrate transport to mimic fasting and caloric restriction can abate cardiometabolic and perhaps other fasting-treatable diseases. Here, we review the metabolic and signaling fates of a hepatocyte carbohydrate, identify evidence to target the key mediators within these pathways, and provide rationale and data to highlight carbohydrate transport as a broad, proximal intervention to block the deleterious sequelae of hepatic glucose and fructose metabolism.


Assuntos
Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Moduladores de Transporte de Membrana/uso terapêutico , Síndrome Metabólica/prevenção & controle , Obesidade/prevenção & controle , Hipernutrição/prevenção & controle , Animais , Transporte Biológico/efeitos dos fármacos , Restrição Calórica/métodos , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Modelos Animais de Doenças , Jejum/metabolismo , Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Terapia de Alvo Molecular/métodos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia
11.
Mamm Genome ; 31(5-6): 119-133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350605

RESUMO

Nutritional constraints including not only caloric restriction or protein deficiency, but also energy-dense diets affect metabolic health and frequently lead to obesity and insulin resistance, as well as glucose intolerance and type 2 diabetes. The effects of these environmental factors are often mediated via epigenetic modifiers that target the expression of metabolic genes. More recently, it was discovered that such parentally acquired metabolic changes can alter the metabolic health of the filial and grand-filial generations. In mammals, this epigenetic inheritance can either follow an intergenerational or transgenerational mode of inheritance. In the case of intergenerational inheritance, epimutations established in gametes persist through the first round of epigenetic reprogramming occurring during preimplantation development. For transgenerational inheritance, epimutations persist additionally throughout the reprogramming that occurs during germ cell development later in embryogenesis. Differentially expressed transcripts, genomic cytosine methylations, and several chemical modifications of histones are prime candidates for tangible marks which may serve as epimutations in inter- and transgenerational inheritance and which are currently being investigated experimentally. We review, here, the current literature in support of epigenetic inheritance of metabolic traits caused by nutritional constraints and potential mechanisms in man and in rodent model systems.


Assuntos
Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Padrões de Herança , Desnutrição/genética , Obesidade/genética , Hipernutrição/genética , Animais , Metilação de DNA , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Desenvolvimento Embrionário/genética , Disruptores Endócrinos/administração & dosagem , Feminino , Interação Gene-Ambiente , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Resistência à Insulina/genética , Masculino , Desnutrição/complicações , Desnutrição/metabolismo , Desnutrição/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Hipernutrição/complicações , Hipernutrição/metabolismo , Hipernutrição/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
PLoS One ; 15(5): e0232400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384084

RESUMO

Metabolic parameters ranging from circulating nutrient levels and substrate utilization to energy expenditure and thermogenesis are temporally modulated by the circadian timing system. During critical embryonic developmental periods, maternal over-nutrition could alter key elements in different tissues associated with the generation of circadian rhythmicity, compromising normal rhythmicity development. To address this issue, we determine whether maternal over-nutrition leads to alterations in the development of circadian rhythmicity at physiological and behavioral levels in the offspring. For this, female rabbits were fed a standard diet (SD) or high-fat and carbohydrate diet (HFCD) before mating and during gestation. Core body temperature and gross locomotor activity were continuously recorded in newborn rabbits, daily measurements of body weight and the amount of milk ingested was carried out. At the end of lactation, tissue samples, including brown adipose tissue (BAT) and white adipose tissue (WAT), were obtained for determining the expression of uncoupling protein-1 (UCP1) and cell death-inducing DNA fragmentation factor-like effector A (CIDEA) genes. HFCD pups exhibited conspicuous differences in the development of the daily rhythm of temperature and locomotor activity compared to the SD pups, including a significant increase in the daily mean core temperature, changes in the time when temperature or activity remains above the average, shifts in the acrophase, decrease in the duration and intensity of the anticipatory rise previous to nursing, and changes in frequency of the rhythms. HFCD pups exhibited a significant increase in BAT thermogenesis markers, and a decrease of these markers in WAT, indicating more heat generation by brown adipocytes and alterations in the browning process. These results indicate that maternal over-nutrition alters offspring homeostatic and chronostatic regulation at the physiological and behavioral levels. Further studies are needed to determine whether these alterations are associated with the changes in the organization of the circadian system of the progeny.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Lactação/fisiologia , Locomoção/fisiologia , Tecido Adiposo Marrom/fisiopatologia , Tecido Adiposo Branco/fisiopatologia , Animais , Proteínas Reguladoras de Apoptose/genética , Regulação da Temperatura Corporal/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Lactação/genética , Locomoção/genética , Fenômenos Fisiológicos da Nutrição Materna , Hipernutrição/complicações , Hipernutrição/genética , Hipernutrição/fisiopatologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Coelhos , Proteína Desacopladora 1/genética
13.
J Nutr Biochem ; 75: 108257, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710935

RESUMO

Maternal high-fat diet (HFD) overfeeding pre- and during pregnancy and lactation may 'program' a 'diabesity' predisposition in the offspring, for inconclusive reasons. Acquired alterations of the hypothalamic promoter methylation and mRNA expression of the satiety neurohormone Pomc are possibly of critical importance here. We investigated within one developmental approach, including male and female rats, the sex-specific DNA methylation pattern and corresponding mRNA expression of both Pomc and its endogenous functional antagonist Agrp in the hypothalamus of adult HFD offspring. Obesity and diabetic disturbances occurred in both male and female HFD offspring, accompanied by altered Pomc promoter methylation pattern. However, this was not related to significant Pomc mRNA expression alterations. In contrast, male-specific alterations of Agrp promoter methylation were found, even associated with reduced mRNA expression of this orexigenic/anabolic Pomc antagonist. In conclusion, acquired epigenetic alterations of the hypothalamic Agrp-Pomc system hardly explain the 'diabesity' phenotype in HFD offspring, while distinct vulnerability and functionality of Agrp promoter and related genomic regions methylation should be further investigated.


Assuntos
Proteína Relacionada com Agouti/genética , Diabetes Mellitus/genética , Epigênese Genética , Hipotálamo/metabolismo , Obesidade/genética , Pró-Opiomelanocortina/genética , Animais , Glicemia/análise , Composição Corporal , Metilação de DNA , Complicações do Diabetes , Dieta Hiperlipídica , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Neuropeptídeos/química , Hipernutrição/genética , Fenótipo , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal/genética , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Fatores Sexuais
14.
Hepatology ; 69(3): 1122-1134, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230575

RESUMO

Regulation of the protein stability of epigenetic regulators remains ill-defined despite its potential applicability in epigenetic therapies. The histone H3-lysine 4-methyltransferase MLL4 is an epigenetic transcriptional coactivator that directs overnutrition-induced obesity and fatty liver formation, and Mll4+/- mice are resistant to both. Here we show that the E3 ubiquitin ligase UBE3A targets MLL4 for degradation, thereby suppressing high-fat diet (HFD)-induced expression of the hepatic steatosis target genes of MLL4. In contrast to Mll4+/- mice, Ube3a+/- mice are hypersensitive to HFD-induced obesity and fatty liver development. Ube3a+/-;Mll4+/- mice lose this hypersensitivity, supporting roles of increased MLL4 levels in both phenotypes of Ube3a+/- mice. Correspondingly, our comparative studies with wild-type, Ube3a+/- and Ube3a-/- and UBE3A-overexpressing transgenic mouse livers demonstrate an inverse correlation of UBE3A protein levels with MLL4 protein levels, expression of the steatosis target genes of MLL4, and their decoration by H3-lysine 4-monomethylation, a surrogate marker for the epigenetic action of MLL4. Conclusion: UBE3A indirectly exerts an epigenetic regulation of obesity and steatosis by degrading MLL4. This UBE3A-MLL4 regulatory axis provides a potential therapeutic venue for treating various MLL4-directed pathogeneses, including obesity and hepatic steatosis.


Assuntos
Fígado Gorduroso/genética , Regulação da Expressão Gênica/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Hipernutrição/genética , Ubiquitina-Proteína Ligases/fisiologia , Animais , Feminino , Masculino , Camundongos
15.
J Clin Invest ; 128(12): 5335-5350, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30226474

RESUMO

Obesity is a major risk factor for developing nonalcoholic fatty liver disease (NAFLD). NAFLD is the most common form of chronic liver disease and is closely associated with insulin resistance, ultimately leading to cirrhosis and hepatocellular carcinoma. However, knowledge of the intracellular regulators of obesity-linked fatty liver disease remains incomplete. Here we showed that hepatic Rho-kinase 1 (ROCK1) drives obesity-induced steatosis in mice through stimulation of de novo lipogenesis. Mice lacking ROCK1 in the liver were resistant to diet-induced obesity owing to increased energy expenditure and thermogenic gene expression. Constitutive expression of hepatic ROCK1 was sufficient to promote adiposity, insulin resistance, and hepatic lipid accumulation in mice fed a high-fat diet. Correspondingly, liver-specific ROCK1 deletion prevented the development of severe hepatic steatosis and reduced hyperglycemia in obese diabetic (ob/ob) mice. Of pathophysiological significance, hepatic ROCK1 was markedly upregulated in humans with fatty liver disease and correlated with risk factors clustering around NAFLD and insulin resistance. Mechanistically, we found that hepatic ROCK1 suppresses AMPK activity and a ROCK1/AMPK pathway is necessary to mediate cannabinoid-induced lipogenesis in the liver. Furthermore, treatment with metformin, the most widely used antidiabetes drug, reduced hepatic lipid accumulation by inactivating ROCK1, resulting in activation of AMPK downstream signaling. Taken together, our findings establish a ROCK1/AMPK signaling axis that regulates de novo lipogenesis, providing a unique target for treating obesity-related metabolic disorders such as NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lipogênese , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hipernutrição/enzimologia , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Humanos , Resistência à Insulina/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Hipernutrição/complicações , Hipernutrição/genética , Hipernutrição/patologia , Quinases Associadas a rho/genética
16.
Rheumatology (Oxford) ; 57(10): 1769-1776, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939348

RESUMO

Objective: Gout is the most common form of inflammatory arthritis and is caused by hyperuricaemia. Some studies have found a reduction in plasma urate with vitamin C supplementation. We tested the hypothesis that high plasma vitamin C is causally associated with low plasma urate and low risk of hyperuricaemia, using a Mendelian randomization approach. Methods: We measured plasma urate and genotyped for the SLC23A1 rs33972313 vitamin C variant in 106 147 individuals from the Copenhagen General Population Study, of which 24 099 had hyperuricaemia. We measured plasma vitamin C in 9234 individuals and genotyped for the SLC2A9 rs7442295 urate variant in 102 345 individuals. Results: Each 10 µmol/l higher plasma vitamin C was associated with a -2.3(95%CI: -0.69 to -3.9) µmol/l lower plasma urate after multivariable adjustments. The SLC23A1 rs33972313 GG genotype was associated with a 9% (5.6%, 11.9%) higher plasma vitamin C compared with AA and AG combined but was not associated with plasma urate (P = 0.31). Likewise, for each 10 µmol/l higher plasma vitamin C the odds ratios for hyperuricaemia were 0.92 (0.86, 0.98) observationally after multivariable adjustments, but 1.01 (0.84, 1.23) genetically. Conclusion: High plasma vitamin C was associated with low plasma urate and with low risk of hyperuricaemia. However, the SLC23A1 genetic variant causing lifelong high plasma vitamin C was not associated with plasma urate levels or with risk of hyperuricaemia. Thus, our data do not support a causal relationship between high plasma vitamin C and low plasma urate.


Assuntos
Ácido Ascórbico/sangue , Hiperuricemia/genética , Hipernutrição/genética , Ácido Úrico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Variação Genética , Genótipo , Humanos , Hiperuricemia/sangue , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Razão de Chances , Hipernutrição/sangue , Fatores de Risco , Adulto Jovem
17.
Nutr Metab Cardiovasc Dis ; 28(9): 944-951, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752038

RESUMO

BACKGROUND AND AIMS: The prevalence of obesity is increasing worldwide at an alarming rate. Altered early nutrition, in particular postnatal overfeeding (PNOF), is a risk factor for impaired cardiac function in adulthood. In the understanding of the initiation or progression of heart diseases, NLRP3 inflammasome and non-coding RNAs have been proposed as key players. In this context, the aim of this study was to decipher the role of NLRP3 inflammasome and its post transcriptional control by micro-RNAs in the regulation of cardiac metabolic function induced by PNOF in mice. METHODS AND RESULTS: Based on a model of mice exposed to PNOF through litter size reduction, we observed increased cardiac protein expression levels of NLRP3 and ETS-1 associated with alterations in insulin signaling. Additionally, miR-193b levels were down-regulated in the adult hearts of overfed animals. In a cardiomyocyte cell line, transfection with miR-193b induced down-regulation of ETS-1 and NLRP3 and improved insulin signaling. CONCLUSIONS: These findings suggest that the miR-193b could be involved in cardiac phenotypic changes observed in adulthood induced by PNOF likely through the regulation of ETS-1 and NLRP3 expression, and through this of insulin signaling.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Cardiopatias/etiologia , Inflamassomos/metabolismo , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estado Nutricional , Hipernutrição/complicações , Animais , Animais Recém-Nascidos , Linhagem Celular , Modelos Animais de Doenças , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Insulina/metabolismo , Tamanho da Ninhada de Vivíparos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/fisiopatologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Ratos , Transdução de Sinais , Fatores de Tempo
18.
Int J Obes (Lond) ; 42(8): 1431-1444, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777232

RESUMO

BACKGROUND AND OBJECTIVE: Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring's hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. METHODS: Eight-week-old female Sprague-Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. RESULTS: With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. CONCLUSION: Maternal overnutrition programs long-term epigenetic alterations in the offspring's hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.


Assuntos
Epigênese Genética/genética , Hipotálamo/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/genética , Hipernutrição/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Pró-Opiomelanocortina/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Metilação de DNA , Modelos Animais de Doenças , Feminino , Hipotálamo/química , Obesidade/genética , Obesidade/metabolismo , Hipernutrição/metabolismo , Hipernutrição/fisiopatologia , Gravidez , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Clin Invest ; 128(1): 141-156, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202465

RESUMO

The incorporation of excess saturated free fatty acids (SFAs) into membrane phospholipids within the ER promotes ER stress, insulin resistance, and hepatic gluconeogenesis. Thioesterase superfamily member 2 (Them2) is a mitochondria-associated long-chain fatty acyl-CoA thioesterase that is activated upon binding phosphatidylcholine transfer protein (PC-TP). Under fasting conditions, the Them2/PC-TP complex directs saturated fatty acyl-CoA toward ß-oxidation. Here, we showed that during either chronic overnutrition or acute induction of ER stress, Them2 and PC-TP play critical roles in trafficking SFAs into the glycerolipid biosynthetic pathway to form saturated phospholipids, which ultimately reduce ER membrane fluidity. The Them2/PC-TP complex activated ER stress pathways by enhancing translocon-mediated efflux of ER calcium. The increased cytosolic calcium, in turn, led to the phosphorylation of calcium/calmodulin-dependent protein kinase II, which promoted both hepatic insulin resistance and gluconeogenesis. These findings delineate a mechanistic link between obesity and insulin resistance and establish the Them2/PC-TP complex as an attractive target for the management of hepatic steatosis and insulin resistance.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Fígado/enzimologia , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Resistência à Insulina , Fígado/patologia , Fluidez de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Hipernutrição/enzimologia , Hipernutrição/genética , Hipernutrição/patologia , Tioléster Hidrolases/genética
20.
Nutr Metab Cardiovasc Dis ; 27(10): 930-937, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28958692

RESUMO

BACKGROUND AND AIMS: The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). METHODS AND RESULTS: On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. CONCLUSION: EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue.


Assuntos
Angiotensina II/farmacologia , Rim/irrigação sanguínea , Hipernutrição/metabolismo , Artéria Renal/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estado Nutricional , Hipernutrição/genética , Hipernutrição/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA