Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Horm Behav ; 162: 105548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636205

RESUMO

Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.


Assuntos
Ansiedade , Hipotireoidismo Congênito , Transportador 2 de Aminoácido Excitatório , Hipocampo , Ratos Wistar , Animais , Masculino , Hipocampo/metabolismo , Ansiedade/metabolismo , Ansiedade/etiologia , Ratos , Feminino , Hipotireoidismo Congênito/metabolismo , Gravidez , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Hormônios Tireóideos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Comportamento Animal/fisiologia , Propiltiouracila , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Thyroid ; 34(5): 659-667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482822

RESUMO

Background: Congenital hypothyroidism (CH) is caused by mutations in cysteine residues, including Cys655 and Cys825 that form disulfide bonds in thyroid peroxidase (TPO). It is highly likely that these disulfide bonds could play an important role in TPO activity. However, to date, no study has comprehensively analyzed cysteine mutations that form disulfide bonds in TPO. In this study, we induced mutations in cysteine residues involved in disulfide bonds formation and analyzed their effect on subcellular localization, degradation, and enzyme activities to evaluate the importance of disulfide bonds in TPO activity. Methods: Vector plasmid TPO mutants, C655F and C825R, known to occur in CH, were transfected into HEK293 cells. TPO activity and protein expression levels were measured by the Amplex red assay and Western blotting. The same procedure was performed in the presence of MG132 proteasome inhibitor. Subcellular localization was determined using immunocytochemistry and flow cytometry. The locations of all disulfide bonds within TPO were predicted using in silico analysis. All TPO mutations associated with disulfide bonds were induced. TPO activity and protein expression levels were also measured in all TPO mutants associated with disulfide bonds using the Amplex red assay and Western blotting. Results: C655F and C825R showed significantly decreased activity and protein expression compared with the wild type (WT) (p < 0.05). In the presence of the MG132 proteasome inhibitor, the protein expression level of TPO increased to a level comparable with that of the WT without increases in its activity. The degree of subcellular distribution of TPO to the cell surface in the mutants was lower compared with the WT TPO. Twenty-four cysteine residues were involved in the formation of 12 disulfide bonds in TPO. All TPO mutants harboring an amino acid substitution in each cysteine showed significantly reduced TPO activity and protein expression levels. Furthermore, the differences in TPO activity depended on the position of the disulfide bond. Conclusions: All 12 disulfide bonds play an important role in the activity of TPO. Furthermore, the mutations lead to misfolding, degradation, and membrane insertion.


Assuntos
Dissulfetos , Iodeto Peroxidase , Complexo de Endopeptidases do Proteassoma , Humanos , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/química , Células HEK293 , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Dissulfetos/metabolismo , Dissulfetos/química , Mutação , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Cisteína/metabolismo , Proteólise , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Autoantígenos
3.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
4.
J Mol Endocrinol ; 69(3): 391-399, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900831

RESUMO

Thyroid hormones are critical for the development of opsins involved in color vision. Hypothyroid mice show delayed M-opsin development and expanded distribution of S-opsin on the retina. However, the effects of maternal hypothyroidism on opsin development remain unknown. This study investigates the effects of congenital central hypothyroidism and maternal hypothyroidism on opsin development in thyrotropin-releasing hormone knockout (TRH-/-) mice. We examined the mRNA expression and protein distribution of S/M-opsin on postnatal days (P)12 and 17, as well as mRNA expression of type 2 and 3 iodothyronine deiodinase (DIO2 and DIO3, respectively) in the retina and type 1 iodothyronine deiodinase (DIO1) in the liver at P12 in TRH+/- mice born to TRH+/- or TRH-/- dams, and conducted S/M-opsin analysis in TRH+/+ or TRH-/- mice born to TRH+/- dams at P12, P17, and P30. M-opsin expression was lower in TRH+/- mice born to TRH-/- dams than in those born to TRH+/- dams, whereas S-opsin expression did not significantly differ between them. DIO1, DIO2, and DIO3 mRNA expression levels were not significantly different between the two groups; therefore, thyroid function in peripheral tissues in the pups was similar. S/M-opsin expression did not significantly differ between the TRH+/+ and TRH-/- mice born to TRH+/- dams on any postnatal day. These results demonstrate that maternal hypothyroidism causes M-opsin developmental delay during the early developmental stages of neonatal mice, and TRH-/- mice, a model of congenital central hypothyroidism, born to a euthyroid dam do not have delayed opsin development.


Assuntos
Hipotireoidismo Congênito , Iodeto Peroxidase , Animais , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Opsinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
5.
Thyroid ; 32(1): 19-27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726525

RESUMO

Background: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Autosomal recessive iodide transport defect (ITD)-causing loss-of-function NIS variants lead to dyshormonogenic congenital hypothyroidism due to deficient iodide accumulation for thyroid hormonogenesis. Here, we aimed to identify, and if so to functionally characterize, novel ITD-causing NIS pathogenic variants in a patient diagnosed with severe dyshormonogenic congenital hypothyroidism due to a defect in iodide accumulation in the thyroid follicular cell, as suggested by nondetectable radioiodide accumulation in a normally located thyroid gland, as well as in salivary glands. Methods: The proposita NIS-coding SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of the novel NIS variants were performed. Results: Sanger sequencing revealed novel compound heterozygous SLC5A5 gene variants (c.970-3C>A and c.1106A>T, p.D369V). In silico analysis suggested that c.970-3C>A disrupts the canonical splice acceptor site located in intron 7. Splicing minigene reporter assay revealed that c.970-3C>A causes exon 8 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variant p.Y324Hfs*148. Moreover, in silico analysis indicated p.D369V as pathogenic. Functional in vitro studies demonstrated that p.D369V NIS does not mediate iodide accumulation, as p.D369V causes NIS to be retained in the endoplasmic reticulum. Mechanistically, we propose an intramolecular ionic interaction involving the ß carboxyl group of D369 and the guanidinium group of R130, located in transmembrane segment 4. Of note, an Asp residue at position 369-which is highly conserved in SLC5A family members-is required for functional NIS expression at the plasma membrane. Conclusions: We uncovered a critical intramolecular interaction between R130 and D369 required for NIS maturation and plasma membrane expression. Moreover, we identified the first intronic variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape in the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.


Assuntos
Membrana Celular/efeitos dos fármacos , Hipotireoidismo Congênito/tratamento farmacológico , Simportadores/efeitos dos fármacos , Membrana Celular/fisiologia , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Humanos , Glândula Tireoide/metabolismo
6.
Endocr Relat Cancer ; 28(9): R217-R230, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378152

RESUMO

Differentiated thyroid carcinoma (DTC) combined with congenital hypothyroidism (CH) is a rare situation, and there is no well-established causal relationship. CH is a common congenital endocrine, while DTC occurring in childhood represents 0.4-3% of all malignancies at this stage of life. The association of CH with DTC could be related to dyshormonogenetic goiter (DHG) or developmental abnormalities. This review will explore the clinical features and the molecular mechanisms potentially associated with the appearance of DTC in CH: sporadic somatic driver mutations, chronic increase of thyroid-stimulating hormone (TSH) levels, higher concentrations of hydrogen peroxide (H2O2), cell division cycle associated 8 (Borelain/CDC8) gene mutations, and in others genes associated with CH - either alone or associated with the mechanisms involved in dyshormonogenesis. There are some pitfalls in the diagnosis of thyroid cancer in patients with CH with nodular goiter, as the proper cytological diagnosis of nodules of patients with dyshormonogenesis might be demanding due to the specific architectural and cytological appearance, which may lead to an erroneous interpretation of malignancy. The purpose of this article is to suggest an analytical framework that embraces the fundamental relationships between the various aspects of CH and CDT. In face of this scenario, the entire genetic and epigenetic context, the complex functioning, and cross talk of cell signaling may determine cellular mechanisms promoting both the maintenance of the differentiated state of the thyroid follicular cell and the disruption of its homeostasis leading to cancer. Whereas, the exact mechanisms for thyroid cancer development in CH remain to be elucidated.


Assuntos
Hipotireoidismo Congênito , Neoplasias da Glândula Tireoide , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Humanos , Peróxido de Hidrogênio , Mutação , Neoplasias da Glândula Tireoide/genética
7.
FASEB J ; 35(8): e21681, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196428

RESUMO

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Assuntos
Proteínas de Membrana/metabolismo , Simportadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Códon sem Sentido , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Sequência Conservada , Cães , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios PDZ/genética , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Simportadores/química , Simportadores/genética , Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
8.
Front Endocrinol (Lausanne) ; 12: 673755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093443

RESUMO

Background: Mutations in GLIS3 cause a rare syndrome characterized by neonatal diabetes mellitus (NDM), congenital hypothyroidism, congenital glaucoma and cystic kidneys. To date, 14 mutations in GLIS3 have been reported, inherited in an autosomal recessive manner. GLIS3 is a key transcription factor involved in ß-cell development, insulin expression, and development of the thyroid, eyes, liver and kidneys. Cases: We describe non-identical twins born to consanguineous parents presenting with NDM, congenital hypothyroidism, congenital glaucoma, hepatic cholestasis, cystic kidney and delayed psychomotor development. Sequence analysis of GLIS3 identified a novel homozygous nonsense mutation, c.2392C>T, p.Gln798Ter (p.Q798*), which results in an early stop codon. The diabetes was treated with a continuous subcutaneous insulin infusion pump and continuous glucose monitoring. Fluctuating blood glucose and intermittent hypoglycemia were observed on follow-up. Conclusions: This report highlights the importance of early molecular diagnosis for appropriate management of NDM. We describe a novel nonsense mutation of GLIS3 causing NDM, extend the phenotype, and discuss the challenges in clinical management. Our findings provide new areas for further investigation into the roles of GLIS3 in the pathophysiology of diabetes mellitus.


Assuntos
Biomarcadores/sangue , Hipotireoidismo Congênito/patologia , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/patologia , Doenças do Recém-Nascido/patologia , Mutação , Proteínas Repressoras/genética , Transativadores/genética , Glicemia/análise , Pré-Escolar , Hipotireoidismo Congênito/etiologia , Hipotireoidismo Congênito/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/metabolismo , Masculino , Fenótipo , Prognóstico
9.
Horm Metab Res ; 53(5): 311-318, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33862642

RESUMO

The contribution of PAX8 genetic variants to congenital hypothyroidism (CH) is not well understood. We aimed to study the genetic variability of exons 3 and 5 of PAX8 gene among a cohort of children with congenital hypothyroidism in correspondence to their clinical aspect. Blood samples were collected from 117 children (63 girls and 54 boys) with CH and enrolled as cases (Group I). All cases underwent biochemical confirmation with low FT4 and high TSH levels and thyroid gland imaging, along with equal number of matched apparently healthy individuals who served as controls (Group II). Genomic materials for exons 3 and 5 of PAX8 gene were extracted, amplified by PCR, detected by electrophoresis, purified, and sequenced by the Sanger technique through the application of ABI 3730x1 DNA Sequencer. Out of 117 cases, eight different effective PAX8 mutations were detected in exon 3 (G23D, V35I, I34T, Q40P, p.R31C, p.R31H, p.R31A, and p.I47T) in 14 patients with their sonographic findings ranged from normal, hypoplastic to thyroid agenesis. Besides the reported mutations, one novel mutation; R31A was detected in 1 euotopic case. Exon 5 analysis revealed no detected mutations elsewhere. In contrast, all healthy control children showed no mutation and normal sonographic findings. Mutations in exon 3 of PAX8 gene, implies its important role in thyroid development and function, as a first estimate of PA8 mutation rate in Egyptian patients with CH having normal and dysgenetic gland. Using ultrasound is mandatory for diagnosis and guiding the treatment of children with CH.


Assuntos
Hipotireoidismo Congênito/genética , Fator de Transcrição PAX8/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Hipotireoidismo Congênito/diagnóstico por imagem , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/terapia , Éxons , Feminino , Variação Genética , Humanos , Lactente , Masculino , Mutação , Fator de Transcrição PAX8/química , Fator de Transcrição PAX8/metabolismo , Alinhamento de Sequência , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/metabolismo , Ultrassonografia
10.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914707

RESUMO

Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress. Nevertheless, untreated patients somehow continue to synthesize sufficient thyroxine to yield measurable serum levels that sustain life. Here, we demonstrate that TGW2346R/W2346R humans, TGcog/cog mice, and TGrdw/rdw rats exhibited no detectable ER export of thyroglobulin, accompanied by severe thyroidal ER stress and thyroid cell death. Nevertheless, thyroxine was synthesized, and brief treatment of TGrdw/rdw rats with antithyroid drug was lethal to the animals. When untreated, remarkably, thyroxine was synthesized on the mutant thyroglobulin protein, delivered via dead thyrocytes that decompose within the follicle lumen, where they were iodinated and cannibalized by surrounding live thyrocytes. As the animals continued to grow goiters, circulating thyroxine increased. However, when TGrdw/rdw rats age, they cannot sustain goiter growth that provided the dying cells needed for ongoing thyroxine synthesis, resulting in profound hypothyroidism. These results establish a disease mechanism wherein dead thyrocytes support organismal survival.


Assuntos
Morte Celular , Hipotireoidismo Congênito/metabolismo , Estresse do Retículo Endoplasmático/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tiroxina/biossíntese , Animais , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/patologia , Retículo Endoplasmático/metabolismo , Bócio/congênito , Humanos , Camundongos , Mutação de Sentido Incorreto , Ratos , Tireoglobulina/genética , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/patologia
11.
Ann Clin Lab Sci ; 51(1): 73-81, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33653783

RESUMO

OBJECTIVE: To analyze the genetic causes of congenital hypothyroidism through the targeted exome sequencing of pediatric patients with congenital hypothyroidism with thyroid gland in situ. METHOD: The study population included 20 patients diagnosed with congenital hypothyroidism with thyroid gland in situ at the Pediatric Endocrinology Clinic of Pusan National University Hospital. Targeted exome sequencing was performed on eight causative genes, including thyroid stimulating hormone receptor (TSHR), mutation in which can cause hypothyroidism with a small or normal sized thyroid gland, and thyroglobulin (TG), thyroid peroxidase (TPO), dual oxidase 2 (DUOX2), dual oxidase maturation factor 2 (DUOXA2), iodotyrosine deiodinase (IYD), solute carrier family 26 member 4 (SLC26A4), and solute carrier family 5 member 5 (SLC5A5), mutations in which are known to cause thyroid dyshormonogenesis. RESULTS: Permanent, subclinical, and transient hypothyroidism were diagnosed in 15 (75%), three (15%), and two (10%) patients, respectively. Genetic mutations were identified in 16 patients (80% positivity rate). Targeted exome sequencing of eight genes identified 24 variants in these patients: 11 DUOX2 variants in eight patients; six TSHR variants in five patients; five TG variants in three patients; and two DUOXA2 variants in two patients. Of these 24 variants, 10 (41.6%) were novel. No variants were identified in TPO, IYD, SLC5A5, or SLC26A4. Two patients displayed triallelic (digenic) mutations (in TG and TSHR in one patient and DUOX2 and TSHR in the other). No variants were identified in three patients with permanent hypothyroidism and one patient with transient hypothyroidism. Genetic variations that could explain the congenital hypothyroidism phenotypes were identified in 12/15 cases (80%). CONCLUSIONS: Targeted exome sequencing identified the genetic causes of congenital hypothyroidism with thyroid gland in situ in 80% of the patients studied, with DUOX2 and TSHR mutations being the most common. As many of the identified variants were novel, additional studies on the genetic causes of congenital hypothyroidism are warranted.


Assuntos
Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Autoantígenos/genética , Criança , Pré-Escolar , Oxidases Duais/genética , Exoma/genética , Feminino , Humanos , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Masculino , Proteínas de Membrana/genética , Mutação , Fenótipo , Receptores da Tireotropina/genética , Transportadores de Sulfato/genética , Simportadores/genética , Tireoglobulina/genética , Glândula Tireoide , Sequenciamento do Exoma/métodos
12.
Mol Cell Endocrinol ; 528: 111223, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667596

RESUMO

The transcription factor GLIS3 is an important factor in hormone biosynthesis and thyroid development, and mutations in GLIS3 are relatively rare. Deletions of more than one of the 11 exons of GLIS3 occur in most patients with various extrathyroidal abnormalities and congenital hypothyroidism (CH), and only 18 missense variants of GLIS3 related to thyroid disease have been reported. The aim of this study was to report the family history and molecular basis of patients with CH who carry GLIS3 variants. Three hundred and fifty-three non-consanguineous infants with CH were recruited and subjected to targeted exome sequencing of CH-related genes. The transcriptional activity and cellular localization of the variants in GLIS3 were investigated in vitro. We identified 20 heterozygous GLIS3 exonic missense variants, including eight novel sites, in 19 patients with CH. One patient carried compound heterozygous GLIS3 variants (p.His34Arg and p.Pro835Leu). None of the variants affected the nuclear localization. However, three variants (p.His34Arg, p.Pro835Leu, and p.Ser893Phe) located in the N-terminal and C-terminal regions of the GLIS3 protein downregulated the transcriptional activation of several genes required for thyroid hormone (TH) biosynthesis. This study of patients with CH extends the current knowledge surrounding the spectrum of GLIS3 variants and the mechanisms by which they cause TH biosynthesis defects.


Assuntos
Núcleo Celular/metabolismo , Hipotireoidismo Congênito/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA/métodos , Transativadores/genética , Transativadores/metabolismo , China , Hipotireoidismo Congênito/metabolismo , Exoma , Feminino , Regulação da Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Transporte Proteico , Hormônios Tireóideos/biossíntese
13.
Mol Cell Proteomics ; 20: 100008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581410

RESUMO

Thyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for triiodothyronine and thyroxine hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism. Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification-mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several congenital hypothyroidism variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and engagement by targeting factors for endoplasmic reticulum-associated degradation. Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for 1 Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.


Assuntos
Hipotireoidismo Congênito/metabolismo , Tireoglobulina/metabolismo , Linhagem Celular , Hipotireoidismo Congênito/genética , Humanos , Mutação , Mapas de Interação de Proteínas , Proteômica , Proteostase , Espectrometria de Massas em Tandem , Tireoglobulina/genética
14.
Thyroid ; 31(7): 1030-1040, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446056

RESUMO

Background: Loss-of-function mutations of thyrotropin receptor (TSHR) are one of the main causes of congenital hypothyroidism. As for many disease-associated G-protein coupled receptors (GPCRs), these mutations often affect the correct trafficking and maturation of the receptor, thus impairing the expression on the cell surface. Several retained GPCR mutants are able to effectively bind their ligands and to transduce signals when they are forced to the cell surface by degradation inhibition or by treatment with chaperones. Despite the large number of well-characterized retained TSHR mutants, no attempts have been made for rescue. Further, little is known about TSHR degradation pathways. We hypothesize that, similar to other GPCRs, TSHR retained mutants may be at least partially functional if their maturation and membrane expression is facilitated by chaperones or degradation inhibitors. Methods: We performed in silico predictions of the functionality of known TSHR variants and compared the results with available in vitro data. Western blot, confocal microscopy, enzyme-linked immunosorbent assays, and dual luciferase assays were used to investigate the effects of degradation pathways inhibition and of chemical chaperone treatments on TSHR variants' maturation and functionality. Results: We found a high discordance rate between in silico predictions and in vitro data for retained TSHR variants, a fact indicative of a conserved potential to initiate signal transduction if these mutants were expressed on the cell surface. We show experimentally that some maturation defective TSHR mutants are able to effectively transduce Gs/cAMP signaling if their maturation and expression are enhanced by using chemical chaperones. Further, through the characterization of the intracellular retained p.N432D variant, we provide new insights on the TSHR degradation mechanism, as our results suggest that aggregation-prone mutant can be directed toward the autophagosomal pathway instead of the canonical proteasome system. Conclusions: Our study reveals alternative pathways for TSHR degradation. Retained TSHR variants can be functional when expressed on the cell surface membrane, thus opening the possibility of further studies on the pharmacological modulation of TSHR expression and functionality in patients in whom TSHR signaling is disrupted.


Assuntos
Autofagossomos/metabolismo , Hipotireoidismo Congênito/genética , Lisossomos/metabolismo , Mutação , Receptores da Tireotropina/genética , Animais , Células COS , Chlorocebus aethiops , Simulação por Computador , Hipotireoidismo Congênito/metabolismo , Humanos , Receptores da Tireotropina/metabolismo , Transdução de Sinais
15.
Thyroid ; 31(3): 420-438, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32777984

RESUMO

Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Hipotireoidismo Congênito/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cardiopatias Congênitas/metabolismo , Miócitos Cardíacos/metabolismo , Disgenesia da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/patologia , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário , Endoderma/anormalidades , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Mesoderma/anormalidades , Mesoderma/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Miócitos Cardíacos/patologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/patologia , Glândula Tireoide/anormalidades , Proteínas Wnt/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-33167848

RESUMO

BACKGROUND AND OBJECTIVE: The effects of hypothyroidism during pregnancy and lactation on carbohydrate metabolism have been mostly studied in male animals. The aim of this study is, therefore, to investigate the effect of fetal and neonatal hypothyroidism (FH and NH) on glucose tolerance in middle-aged female rat offsprings. METHODS: Pregnant female rats were divided into three groups: Rats in the control group consumed tap water, while those in the FH and NH groups consumed 250 mg/L of 6-propyl-2-thiouracil (PTU) in their drinking water during gestation or lactation periods, respectively. After weaning, the female offspring were separated and divided into 3 groups (n=8/group): Control, FH, and NH. Bodyweight was recorded monthly and an intravenous glucose tolerance test (IVGTT) was performed at month 12. RESULTS: Compared to controls, female rats in the FH group had significantly higher plasma glucose levels than controls throughout the IVGTT except at min 60. Values at min 5 of the FH and control group were 196.1±1.9 and 155.3±5.9 mg/dL, respectively (P<0.05). In the NH group, plasma glucose levels were significantly higher only at min 5 (185.7±14.1 vs. 155.3±5.9 mg/dL, P<0.05). CONCLUSION: Hypothyroidism during fetal or neonatal periods caused glucose intolerance in middle- aged female offspring rats.


Assuntos
Envelhecimento/metabolismo , Hipotireoidismo Congênito/metabolismo , Glucose/metabolismo , Fatores Etários , Animais , Metabolismo dos Carboidratos , Hipotireoidismo Congênito/patologia , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/etiologia , Teste de Tolerância a Glucose , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
17.
J Clin Endocrinol Metab ; 106(1): e265-e272, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108452

RESUMO

CONTEXT: Inactivating variants of thyrotropin (thyroid-stimulating hormone; TSH) receptor (TSHR) cause congenital hypothyroidism. More than 60 such variants have been reported so far, most of which were located in the extracellular or transmembrane domain. OBJECTIVE: We report the identification and characterization of a frameshift TSHR variant in the intracytoplasmic C-tail region. METHODS: Sequencing of TSHR was performed in a patient with congenital hypothyroidism. The functionality of the identified variants was assessed by expressing TSHR in HEK293 cells and measuring TSH-dependent activation of the cAMP-response element-luciferase reporter. A series of systematic mutagenesis experiments were performed to characterize the frameshifted amino acid sequence. RESULTS: The proband was heterozygous for a known TSHR variant (p.Arg519His) and a novel frameshift TSHR variant (p.Val711Phefs*18), which removed 54 C-terminal residues and added a 17-amino acid frameshifted sequence. The loss of function of Val711Phefs*18-TSHR was confirmed in vitro, but the function of Val711*-TSHR was found to be normal. Western blotting showed the low protein expression of Val711Phefs*18-TSHR. Fusion of the frameshift sequence to green fluorescent protein or luciferase induced inactivation of them, indicating that the sequence acted as a degron. A systematic mutagenesis study revealed that the density of hydrophobic residues in the frameshift sequence determined the stability. Eight additional frameshift TSHR variants that covered all possible shifted frames in C-tail were created, and another frameshift variant (Thr748Profs*27) with similar effect was found. CONCLUSIONS: We characterized a naturally occurring frameshift TSHR variant located in C-tail, and provided a unique evidence that hydrophobicity in the C-terminal region of the receptor affects protein stability.


Assuntos
Hipotireoidismo Congênito/genética , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Substituição de Aminoácidos , Arginina/genética , Pré-Escolar , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/metabolismo , Análise Mutacional de DNA , Mutação da Fase de Leitura/genética , Células HEK293 , Histidina/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Pais , Linhagem , Fenilalanina/genética , Domínios Proteicos/genética , Estabilidade Proteica , Proteólise , Receptores da Tireotropina/química , Valina/genética
18.
Thyroid ; 31(6): 861-869, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33126831

RESUMO

Background: The fetal hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the control of parturition and maturation of organ systems in preparation for birth. In hypothyroid fetuses, gestational length may be prolonged and maturational processes delayed. The extent to which the effects of thyroid hormone deficiency in utero on the timing of fetal maturation and parturition are mediated by changes to the structure and function of the fetal HPA axis is unknown. Methods: In twin sheep pregnancies where one fetus was thyroidectomized and the other sham-operated, this study investigated the effect of hypothyroidism on circulating concentrations of adrenocorticotrophic hormone (ACTH) and cortisol, and the structure and secretory capacity of the anterior pituitary and adrenal glands. The relative population of pituitary corticotrophs and the masses of the adrenal zones were assessed by immunohistochemical and stereological techniques. Adrenal mRNA abundances of key steroidogenic enzymes and growth factors were examined by quantitative polymerase chain reaction. Results: Hypothyroidism in utero reduced plasma concentrations of ACTH and cortisol. In thyroid-deficient fetuses, the mass of corticotrophs in the anterior pituitary gland was unexpectedly increased, while the mass of the zona fasciculata and its proportion of the adrenal gland were decreased. These structural changes were associated with lower adrenocortical mRNA abundances of insulin-like growth factor (IGF)-I and its receptor, and key steroidogenic enzymes responsible for glucocorticoid synthesis. The relative mass of the adrenal medulla and its proportion of the adrenal gland were increased by thyroid hormone deficiency in utero, without any change in expression of phenylethanolamine N-methyltransferase or the IGF system. Conclusions: Thyroid hormones are important regulators of the structure and secretory capacity of the pituitary-adrenal axis before birth. In hypothyroid fetuses, low plasma cortisol may be due to impaired adrenocortical growth and steroidogenic enzyme expression, secondary to low circulating ACTH concentration. Greater corticotroph population in the anterior pituitary gland of the hypothyroid fetus indicates compensatory cell proliferation and that there may be abnormal corticotroph capacity for ACTH synthesis and/or impaired hypothalamic input. Suppression of the development of the fetal HPA axis by thyroid hormone deficiency may contribute to the delay in fetal maturation and delivery observed in hypothyroid offspring.


Assuntos
Corticosteroides/metabolismo , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hipotireoidismo Congênito/metabolismo , Corticotrofos/metabolismo , Desenvolvimento Fetal/fisiologia , Doenças Fetais/metabolismo , Tireoidectomia , Glândulas Suprarrenais/patologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/patologia , Animais , Contagem de Células , Proliferação de Células , Hipotireoidismo Congênito/patologia , Corticotrofos/patologia , Doenças Fetais/patologia , Maturidade dos Órgãos Fetais , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Fator de Crescimento Insulin-Like I/genética , Sistema Hipófise-Suprarrenal/metabolismo , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Ovinos , Tiroxina/deficiência , Tiroxina/metabolismo , Tri-Iodotironina/deficiência , Tri-Iodotironina/metabolismo , Zona Fasciculada/metabolismo , Zona Fasciculada/patologia
19.
Horm Metab Res ; 52(11): 815-821, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559769

RESUMO

Thyroid hormone deficiency during crucial stages of development causes congenital hypothyroidism. This syndrome alters hypothalamic pathways involved in long-term bodyweight regulation as ObRb-STAT3 leptin signaling pathway, which is associated with metabolic syndrome. This study aimed to determine if thyroxine treatment during pregnancy and lactation in hypothyroid mothers avoids, in the congenital hypothyroid offspring, the alterations in metabolic programming related to metabolic syndrome and the ObRb-STAT3 leptin signaling pathway in hypothalamus. Twenty-four virgin female Wistar rats were divided into euthyroid, hypothyroid, and hypothyroid with thyroxine treatment (20 µg/kg/day T4 since pregnancy until lactation). The bodyweight and energy intake, insulin resistance, glucose tolerance, metabolic and hormonal parameters were determined in offspring at 28 weeks after birth. Then, the rats were euthanized to obtain adipose tissue reserves and hypothalamus to measure the expression of ObRb, STAT3, pSTAT3, and SOCS3. Congenital hypothyroidism presented metabolic syndrome such as insulin resistance, glucose tolerance, dyslipidemias, an increase in cardiovascular risk (Castelli I males:166.67%, females: 173.56%; Castelli II males: 375.51%, females: 546.67%), and hypothalamic leptin resistance (SOCS3, Males: 10.96%, females: 25.85%). Meanwhile, the thyroxine treatment in the mothers during pregnancy and lactation prevents the metabolic disturbance. In conclusion, thyroxine treatment during the critical perinatal stage for metabolic programming prevents congenital hypothyroidism-caused metabolic syndrome and hypothalamic leptin resistance.


Assuntos
Hipotireoidismo Congênito/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Tiroxina/administração & dosagem , Animais , Animais Recém-Nascidos , Hipotireoidismo Congênito/etiologia , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/patologia , Feminino , Masculino , Ratos , Ratos Wistar , Receptores para Leptina/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
20.
Pediatr Dev Pathol ; 23(4): 285-295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32212960

RESUMO

INTRODUCTION: The objective of this study is to investigate the role of thyroid hormone (TH) in the pathogenesis of intestinal dysganglionosis (ID). METHODS: A zebrafish model of congenital hypothyroidism (CH) was created by exposing the larvae to the 6-propyl-2-thiouracil (PTU). The enteric neurons were labeled with anti-HuC/D antibodies. The number of enteric neurons was counted. The larval intestine was dissociated and stained with anti-p75 and anti-α4 integrin antibodies. Mitosis and apoptosis of the p75+ α4 integrin+ enteric neural crest cells (ENCCs) were studied using flow cytometry. Intestinal motility was studied by analyzing the transit of fluorescent tracers. RESULTS: PTU (25 mg/L) significantly reduced TH production at 6- and 9-days post fertilization without changing the body length, body weight, and intestinal length of the larvae. Furthermore, PTU inhibited mitosis of ENCCs and reduced the number of enteric neurons throughout the larval zebrafish intestine. Importantly, PTU inhibited intestinal transit of fluorescent tracers. Finally, thyroxine supplementation restored ENCC mitosis, increased the number of enteric neurons, and recovered intestinal motility in the PTU-treated larvae. CONCLUSIONS: PTU inhibited TH production, reduced the number of enteric neurons, impaired intestinal motility, and impeded ENCC mitosis in zebrafish, suggesting a possible role of CH in the pathogenesis of ID.


Assuntos
Hipotireoidismo Congênito/complicações , Sistema Nervoso Entérico/embriologia , Doença de Hirschsprung/embriologia , Hormônios Tireóideos/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Hipotireoidismo Congênito/embriologia , Hipotireoidismo Congênito/metabolismo , Hipotireoidismo Congênito/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Citometria de Fluxo , Motilidade Gastrointestinal , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Crista Neural/embriologia , Crista Neural/metabolismo , Crista Neural/patologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA