Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Biomolecules ; 13(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-38002333

RESUMO

Histamine is a neuromodulator that affects gut motility and visceral sensitivity through intrinsic and extrinsic neural pathways, yet the mechanisms regulating histamine availability in these pathways remain poorly understood. Here, we show that enteric glia contribute to histamine clearance in the enteric nervous system (ENS) through their expression of the enzyme histamine N-methyltransferase (HNMT). Glial HNMT expression was initially assessed using immunolabeling and gene expression, and functionally tested using CRISPR-Cas9 to create a Cre-dependent conditional Hnmt ablation model targeting glia. Immunolabeling, calcium imaging, and visceromotor reflex recordings were used to assess the effects on ENS structure and visceral hypersensitivity. Immunolabeling and gene expression data show that enteric neurons and glia express HNMT. Deleting Hnmt in Sox10+ enteric glia increased glial histamine levels and altered visceromotor responses to colorectal distension in male mice, with no effect in females. Interestingly, deleting glial Hnmt protected males from histamine-driven visceral hypersensitivity. These data uncover a significant role for glial HNMT in histamine degradation in the gut, which impacts histamine-driven visceral hypersensitivity in a sex-dependent manner. Changes in the capacity of glia to clear histamines could play a role in the susceptibility to developing visceral pain in disorders of the gut-brain interaction.


Assuntos
Histamina N-Metiltransferase , Histamina , Feminino , Masculino , Camundongos , Animais , Histamina/metabolismo , Histamina N-Metiltransferase/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
2.
Genet Test Mol Biomarkers ; 26(11): 543-549, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378841

RESUMO

Background: Previous studies have reported conflicting results regarding the potential association between the risk of Parkinson's disease (PD) and the single nucleotide polymorphism, rs11558538 (Thr105Ile), in the histamine N-methyltransferase (HNMT) gene. We performed a systematic review and meta-analysis to improve our understanding of the association between them. Methods: We systematically searched several online databases to identify relevant studies regarding the association between rs11558538 and PD. We extracted data on the frequencies of genotypes (Thr/Thr, Thr/Ile, and Ile/Ile) and alleles (Thr and Ile) at the rs11558538 locus in patients with PD and healthy controls. Associations between genotype and PD risk were assessed in terms of odds ratios (OR) and 95% confidence intervals (CI). Results: The final meta-analysis included six case-control studies and data from the International Parkinson's Disease Genomics Consortium (IPDGC) data base on the association between HNMT rs11558538 and PD, involving 22,855 patients and 65,367 controls. Among the studies, substantial heterogeneity was observed (I2 = 84.42 for genotype and I2 = 73.39 for allele). Both the Ile (log OR: -0.31; 95% CI: -0.5 to -0.12; p < 0.001) and Thr/Ile+Ile genotypes (log OR: -0.32; 95% CI: -0.55 to -0.08; p < 0.001) were associated with a decreased risk of sporadic PD across all study populations. Subgroup analysis showed the protective effect of Thr/Ile+Ile genotypes in non-Chinese cohorts (log OR: -0.66; 95% CI: -0.67 to -0.04; p < 0.001) but not in Chinese cohorts (log OR: -0.26; 95% CI: -0.63 to 0.11; p = 0.13). Conclusion: Our findings suggest that the HNMT rs11558538T polymorphism may protect against PD, particularly in patients from the United States and Europe.


Assuntos
Histamina N-Metiltransferase , Doença de Parkinson , Humanos , Histamina N-Metiltransferase/genética , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Povo Asiático/genética
3.
Neuropharmacology ; 212: 109065, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487272

RESUMO

Brain histamine acts as a neurotransmitter in the regulation of various brain activities. Previous studies have shown that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, controls brain histamine concentration and brain function. However, the relative contribution of astrocytic or neuronal HNMT to the regulation of the histaminergic system is still inconclusive. Here, we phenotyped astrocytes-specific HNMT knockout (cKO) mice to clarify the involvement of astrocytic HNMT in histamine clearance and brain function. First, we performed histological examinations using HNMT reporter mice and showed a wide distribution of HNMT in the brain and astrocytic HNMT expression. Then, we created cKO mice by Cre-loxP system and confirmed that HNMT expression in cKO primary astrocytes was robustly decreased. Although total HNMT level in the cortex was not substantially different between control and cKO brains, histamine concentration after histamine release was elevated in cKO cortex. In behavioral tests, impaired motor coordination and lower locomotor activity were observed in the cKO mice. However, anxiety-like behaviors, depression-like behaviors, and memory functions were not altered by astrocytic HNMT disruption. Although sleep analysis demonstrated that the quantity of wakefulness and sleep did not change, the increased power density of delta frequency during wakefulness indicated lower cortical activation in cKO mice. These results demonstrate that astrocytic HNMT contributes to histamine clearance after histamine release in the cortex and plays a role in the regulation of motor coordination, locomotor activity, and vigilance state.


Assuntos
Histamina N-Metiltransferase , Histamina , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Histamina/metabolismo , Histamina N-Metiltransferase/genética , Histamina N-Metiltransferase/metabolismo , Camundongos , Vigília/fisiologia
4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163585

RESUMO

BACKGROUND: The treatment of non-small-cell lung cancer (NSCLC) involves platinum-based chemotherapy. It is typically accompanied by chemoresistance resulting from antioxidant properties conferred by cancer stem cells (CSCs). Human epidermal growth factor receptor 2 (HER2) enhances CSCs and antioxidant properties in cancers, including NSCLC. METHODS: Here, we elucidated the role of histamine N-methyltransferase (HNMT), a histamine metabolism enzyme significantly upregulated in NSCLC and coexpressed with HER2. HNMT expression in lung cancer tissues was determined using quantitative reverse transcription PCR (RT-qPCR). A publicly available dataset was used to determine HNMT's potential as an NSCLC target molecule. Immunohistochemistry and coimmunoprecipitation were used to determine HNMT-HER2 correlations and interactions, respectively. HNMT shRNA and overexpression plasmids were used to explore HNMT functions in vitro and in vivo. We also examined miRNAs that may target HNMT and investigated HNMT/HER2's role on NSCLC cells' antioxidant properties. Finally, how HNMT loss affects NSCLC cells' sensitivity to cisplatin was investigated. RESULTS: HNMT was significantly upregulated in human NSCLC tissues, conferred a worse prognosis, and was coexpressed with HER2. HNMT depletion and overexpression respectively decreased and increased cell proliferation, colony formation, tumorsphere formation, and CSCs marker expression. Coimmunoprecipitation analysis indicated that HNMT directly interacts with HER2. TARGETSCAN analysis revealed that HNMT is a miR-223 and miR-3065-5p target. TBHp treatment increased HER2 expression, whereas shHNMT disrupted the Nuclear factor erythroid 2-related factor 2 (Nrf2)/ hemeoxygenase-1 (HO-1)/HER2 axis and increased reactive oxygen species accumulation in NSCLC cells. Finally, shHNMT sensitized H441 cells to cisplatin treatment in vitro and in vivo. CONCLUSIONS: Therefore, HNMT upregulation in NSCLC cells may upregulate HER2 expression, increasing tumorigenicity and chemoresistance through CSCs maintenance and antioxidant properties. This newly discovered regulatory axis may aid in retarding NSCLC progression and chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histamina N-Metiltransferase/biossíntese , Neoplasias Pulmonares/enzimologia , Células-Tronco Neoplásicas/enzimologia , Estresse Oxidativo , Receptor ErbB-2/metabolismo , Regulação para Cima , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Histamina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/genética
5.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680041

RESUMO

Alzheimer's disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aß) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Histamina N-Metiltransferase/genética , Histamina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Histamínicos/uso terapêutico , Histamina N-Metiltransferase/antagonistas & inibidores , Humanos
6.
BMJ Case Rep ; 13(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33310825

RESUMO

Histamine is involved in various physiological functions like sleep-wake cycle and stress regulation. The histamine N-methyltransferase (HNMT) enzyme is the only pathway for termination of histamine neurotransmission in the central nervous system. Experiments with HNMT knockout mice generated aggressive behaviours and dysregulation of sleep-wake cycles. Recently, seven members of two unrelated consanguineous families have been reported in whom two different missense HNMT mutations were identified. All showed severe intellectual disability, delayed speech development and mild regression from the age of 5 years without, however, any dysmorphisms or congenital abnormality. A diagnosis of mental retardation, autosomal recessive 51 was made. Here, we describe a severely mentally retarded adolescent male born from second cousins with a homozygous mutation in HNMT. His phenotypic profile comprised aggression, delayed speech, autism, sleep disturbances and gastro-intestinal problems. At early age, regression occurred. Treatment with hydroxyzine combined with a histamine-restricted diet resulted in significant general improvement.


Assuntos
Histamina N-Metiltransferase/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Agressão/fisiologia , Encéfalo/metabolismo , Histamina/metabolismo , Histamina N-Metiltransferase/metabolismo , Humanos , Hidroxizina/uso terapêutico , Deficiência Intelectual/dietoterapia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Masculino , Sono/fisiologia , Resultado do Tratamento , Adulto Jovem
7.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744146

RESUMO

Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood⁻brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson's disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.


Assuntos
Encéfalo/metabolismo , Histamina N-Metiltransferase/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Encefalopatias/tratamento farmacológico , Encefalopatias/etiologia , Encefalopatias/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação Enzimológica da Expressão Gênica , Histamina/metabolismo , Histamina N-Metiltransferase/antagonistas & inibidores , Histamina N-Metiltransferase/genética , Humanos , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Fenótipo , Receptores Histamínicos/metabolismo
8.
Nihon Yakurigaku Zasshi ; 152(1): 16-20, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29998947

RESUMO

Histamine acts as a neurotransmitter to regulate various physiological functions in CNS. Recent reports showed the involvement of histaminergic dysfunction in neurological disorders. Neurotransmitter clearance is essential to determine brain neurotransmitter concentration. However, molecular mechanism of brain histamine clearance remains largely unknown. First, we examined the molecular mechanism of histamine clearance in primary human astrocytes. We demonstrated that extracellular histamine was transported through organic cation transporter (OCT) 3 and plasma membrane monoamine transporter (PMAT), and subsequently intracellular histamine was inactivated by histamine N-methyltransferase (HNMT) in cytosol. Next, we generated HNMT knockout (HNMT KO) mice to investigate the role of HNMT in vivo. HNMT deficiency dramatically enhanced brain histamine concentration, indicating the important role of HNMT in histamine inactivation. HNMT KO mice showed high aggression via abnormal histamine H2 receptor (H2R) activation and the disrupted sleep-wake cycle via excessive H1R activation. These observations show that HNMT plays a pivotal role in regulating brain histamine concentration, and modulates aggression as well as the sleep-wake cycle. Although importance of OCT3 and PMAT in histaminergic nervous system remains still unknown, our preliminary data show the contribution of PMAT to brain histamine concentration. We also try to find novel inhibitors targeting brain histamine clearance. We hope our study could lead a better understanding of neuropsychiatric disorders and the development of new drugs inhibiting HNMT, OCT3 and PMAT activity.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Histamina N-Metiltransferase/genética , Histamina/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Histamina N-Metiltransferase/deficiência , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Cultura Primária de Células , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 64(3): 103-107, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29506638

RESUMO

Atopic dermatitis (AD) is one of the most prevalent skin diseases around the world. Excessive histamine plays a critical role as an inflammatory factor in the pathogenesis of AD. Deregulated microRNAs (miRNAs) were involved in atopic dermatitis by targeting various genes. MiR-223 had been reported to play a vital role in hematopoiesis. In this study, we identified upregulated miR-223 in the whole blood cells of a large group of AD patients. What's more, we found for the first time that one of the major histamine degradation enzymes, histamine-N-methyltransferase (HNMT), was increased in AD patients and AD model mice. Although there was one miR-223 binding site in the 3'- untranslated region of the HNMT gene, HNMT were not inhibited by miR-223. Taken together, it suggested that miR-223 participates in AD through upregulating HNMT indirectly to degrade the excessive histamine.


Assuntos
Dermatite Atópica/genética , Histamina N-Metiltransferase/genética , MicroRNAs/genética , Regulação para Cima , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Feminino , Células HEK293 , Células Hep G2 , Histamina/metabolismo , Histamina N-Metiltransferase/metabolismo , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Adulto Jovem
10.
J Mol Neurosci ; 64(4): 574-580, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29564728

RESUMO

Large-scale meta-analyses of genome-wide association studies have identified several loci linked to sporadic Parkinson's disease (PD). However, the roles of some important loci, such as HNMT Thr105Ile, STK39 rs2390669, and NMD3 rs34016896, have not been clarified in Chinese populations. Accumulating evidence indicates that some common clinicopathological characteristics are shared by different neurodegenerative diseases. Consequently, we conducted a large sample study to investigate associations between these variants and PD, multiple system atrophy (MSA), and amyotrophic lateral sclerosis (ALS) in Chinese populations. A total of 2417 patients, including 1237 PD, 850 SALS, and 330 MSA patients, along with 836 healthy controls (HCs) were examined in this study. All patients were genotyped for SNPs using the Sequenom iPLEX assay. No significant differences were found in the genotype and allele frequency distributions between the three neurodegenerative diseases and three candidate variants investigated. In subgroup analysis, compared with PD patients with initial symptom of tremor and HCs, the minor allele frequency of NMD3 rs34016896 in PD patients with initial symptoms of rigidity/bradykinesia was significantly lower. In addition, female patients carrying the rs34016896 minor allele had an increased risk of developing MSA (OR 1.25, 95% CI [1.09-1.43]), and ALS patients carrying the Ile105 polymorphism on the Thr105Ile allele in the HNMT gene exhibited a trend toward a delay in symptom onset of 3.010 ± 1.629 years. Our results indicate that the presence of the rs34016896 allele in the NMD3 gene may contribute to the development of synucleinopathies and that the Thr105Ile allele in the HNMT gene could potentially be an important therapeutic target for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Histamina N-Metiltransferase/genética , Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Idoso , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Inflamm Res ; 66(11): 1021-1029, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28791419

RESUMO

OBJECTIVE: Recently, we characterized mouse monoclonal antibodies that allow the specific and sensitive detection of human histamine N-methyltransferase (HNMT). To understand differences in binding characteristics and recognition of enzyme variants we mapped the antibody binding sites. METHODS: Fragments of human HNMT were expressed as glutathione S-transferase fusion proteins that were used for testing antibody binding on immunoblots. Combined information from species cross-reactivity, sequence comparison, protein structure, and binding site prediction software were used to localize the epitope recognized by each antibody. RESULTS: All eight monoclonal HNMT antibodies bound to linear epitopes in the C-terminal domain of the 292 amino acid protein. Of the five antibodies cross-reacting with HNMT from other species, one bound region L182-T223, three region M224-E261, and one region L262-A292. All three antibodies recognising only human HNMT bound the C-terminal region L262-A292 that contains residues present only in the human protein. CONCLUSIONS: Our HNMT monoclonal antibodies bind in three different regions of the protein and those binding the same putative epitope exhibit similar binding characteristics and species cross-reactivity. Antibodies binding non-overlapping epitopes will facilitate analyses of all clinically relevant variants described for HNMT.


Assuntos
Anticorpos Monoclonais/metabolismo , Histamina N-Metiltransferase/metabolismo , Anticorpos Monoclonais/química , Sítios de Ligação , Epitopos/química , Epitopos/metabolismo , Histamina N-Metiltransferase/química , Histamina N-Metiltransferase/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Eur Neuropsychopharmacol ; 27(5): 442-449, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28400155

RESUMO

Sedation is a common adverse effect of clozapine treatment, which may be partly related to clozapine binding to histamine receptors in the central nervous system. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) in the histaminergic system are associated with sedation in clozapine-treated patients. The study population comprised 237 clozapine-treated, Finnish, Caucasian patients that were diagnosed with schizophrenia and 176 were genotyped using Illumina HumanCoreExome-12 BeadChip. Sedation levels were assessed using self-rating questions from the Liverpool University Neuroleptic Side Effect Rating Scale (LUNSERS). The relationships between 55 different SNPs in the histaminergic system and adverse sedation effects were examined. SNPs were analyzed separately, and in groups, to formulate a genetic risk score (GRS). A permutation test was performed to avoid type I errors. Eight linked SNPs (r2 = 1) in the HNMT gene were also associated with sedation according to the GLM, adjusted for age, gender and BMI (false-discovery-rate-adjusted p = 0.013). An association on a trend level between a GRS of four different SNPs (recessive histamine N-methyltransferase HNMT rs2737385, additive histamine receptor H1 rs1552498, dominant HRH1 rs17034063 and recessive amine oxidase, copper containing 1 AOC1 rs6977381) and sedation was found (permuted p-value = 0.066) in a generalized linear model (GLM) incorporating age, gender and body mass index (BMI; adjusted R2 = 0.22). Polymorphisms in genes encoding histamine receptors or enzymes related to histamine metabolism may explain individual variation in sedative effects experienced during clozapine treatment.


Assuntos
Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Histamina N-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Histamínicos/genética , Esquizofrenia/tratamento farmacológico , Adulto , Amina Oxidase (contendo Cobre)/genética , Distribuição de Qui-Quadrado , Sedação Consciente , Feminino , Finlândia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Maligna Neuroléptica/etiologia , Síndrome Maligna Neuroléptica/genética , Análise de Regressão , Esquizofrenia/genética , Índice de Gravidade de Doença
13.
J Neural Transm (Vienna) ; 124(3): 285-291, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27837280

RESUMO

A recent meta-analysis suggests an association between the rs11558538 single nucleotide polymorphism in the histamine-N-methyl-transferase (HNMT) gene and the risk for Parkinson's disease. Based on the possible relationship between PD and restless legs syndrome (RLS), we tried to establish whether rs11558538 SNP is associated with the risk for RLS. We studied the genotype and allelic variant frequencies of HNMT rs11558538 SNP 205 RLS patients and 410 healthy controls using a TaqMan assay. The frequencies of the HNMT rs11558538 genotypes allelic variants were similar between RLS patients and controls, and were not influenced by gender, family history of RLS, or RLS severity. RLS patients carrying the genotype rs11558538TT had an earlier age at onset, but this finding was based on three subjects only. These results suggest a lack of major association between HNMT rs11558538 SNP and the risk for RLS.


Assuntos
Histamina N-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único , Síndrome das Pernas Inquietas/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome das Pernas Inquietas/epidemiologia , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Adulto Jovem
14.
Inflamm Res ; 66(1): 67-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27632021

RESUMO

OBJECTIVE: The lack of suitable antibodies for the histamine inactivating enzyme histamine N-methyltransferase (HMT) has so far prevented the direct analysis of HMT proteins in man and other mammals. METHODS: A series of monoclonal antibodies was produced by immunizing mice with human and porcine HMT expressed in vitro. Antibodies were characterized by immunoblotting and immunohistochemical staining. RESULTS: Six different monoclonal antibodies specific for human HMT and four different monoclonal antibodies specific for porcine HMT were obtained that can detect HMT with up to tenfold greater sensitivity than the most sensitive enzymatic assays currently available. Using these antibodies allowed us to confirm the expression and cellular localization of HMT in various human and porcine tissues, where the presence of the enzyme had previously been deduced from activity measurement and HMT mRNA analysis. Immunohistochemical staining of human and porcine tissue sections clearly showed that HMT is a cytosolic protein, which is localized in specific cells of most mammalian tissues. CONCLUSIONS: The new monoclonal antibodies not only allow a comprehensive quantitative evaluation of the expression of HMT at the cellular level in man and other mammals but will also facilitate sensitive analyses of disease-associated alterations of this protein.


Assuntos
Anticorpos Monoclonais/farmacologia , Histamina N-Metiltransferase/imunologia , Histamina N-Metiltransferase/metabolismo , Adulto , Animais , Feminino , Glutationa Transferase/genética , Histamina N-Metiltransferase/genética , Humanos , Rim/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/imunologia , Suínos , Adulto Jovem
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 188-199, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769936

RESUMO

The degradation of histamine catalyzed by the SAM-dependent histamine N-methyltransferase (HNMT) is critically important for the maintenance of neurological processes. Recently, two mutations in the encoding human gene were reported to give rise to dysfunctional protein variants (G60D and L208P) leading to intellectual disability. In the present study, we have expressed eight L208 variants with either apolar (L208F and L208V), polar (L208N and L208T) or charged (L208D, L208H, L208K and L208R) amino acids to define the impact of side chain variations on protein structure and function. We found that the variants L208N, L208T, L208D and L208H were severely compromised in their stability. The other four variants were obtained in lower amounts in the order wild-type HNMT>L208F=L208V>L208K=L208R. Biochemical characterization of the two variants L208F and L208V exhibited similar Michaelis-Menten parameters for SAM and histamine while the enzymatic activity was reduced to 21% and 48%, respectively. A substantial loss of enzymatic activity and binding affinity for histamine was seen for the L208K and L208R variants. Similarly the thermal stability for the latter variants was reduced by 8 and 13°C, respectively. These findings demonstrate that position 208 is extremely sensitive to side chain variations and even conservative replacements affect enzymatic function. Molecular dynamics simulations showed that amino acid replacements in position 208 perturb the helical character and disrupt interactions with the adjacent ß-strand, which is involved in the binding and correct positioning of histamine. This finding rationalizes the gradual loss of enzymatic activity observed in the L208 variants.


Assuntos
Histamina N-Metiltransferase/genética , Deficiência Intelectual/genética , Leucina/genética , Mutação Puntual , Sequência de Aminoácidos , Animais , Histamina/metabolismo , Histamina N-Metiltransferase/química , Histamina N-Metiltransferase/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Leucina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica , Alinhamento de Sequência
16.
Neurologia ; 32(8): 500-507, 2017 Oct.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27130307

RESUMO

BACKGROUND: Low histamine metabolism has been suggested to play a role in the pathogenesis of allergy and migraine. We investigated the possible association between 2 single-nucleotide polymorphisms (SNP), C314T HNMT and C2029G DAO, and the presence and severity of migraine and migraine-related disability. MATERIALS AND METHODS: We studied the frequency of C314T HNMT and C2029G DAO allelic variants in 162 mothers of children with allergies (80 with migraine and 82 without) using a TaqMan-based qPCR Assay and a case-control model. We conducted a logistic regression analysis to examine the association between migraine and the allelic and haplotype variants. RESULTS: Mutant C2029G DAO SNP was found significantly more frequently in the group of women with migraine than in controls (OR, 1.6; 95% CI, 1.1-2.1). No significant differences were found in frequencies of genotypes or alleles in the case of C314T HNMT SNP. Both mutated alleles were associated with migraine-related disability. Coexistence of alleles for both SNPs (haplotypes) showed a strong association with migraine. Haplotypes containing both mutated alleles (either heterozygous or homozygous) were very strongly associated with MIDAS grade iv migraine (OR, 45.0; 95% CI, 5.2-358). This suggests that mutant alleles of C314T for HNMT and C2029G for DAO polymorphisms may interact in a way that increases the risk and impact of migraine. CONCLUSIONS: We suggest a synergistic association between HNMT and DAO functional polymorphisms and migraine; this hypothesis must be further confirmed by larger studies. However, the characteristics and ethnic differences between analysed populations should be considered when interpreting the results.


Assuntos
Amina Oxidase (contendo Cobre)/genética , Predisposição Genética para Doença , Histamina N-Metiltransferase/genética , Transtornos de Enxaqueca/genética , Mães , Polimorfismo de Nucleotídeo Único/genética , Adulto , Estudos de Casos e Controles , Criança , Feminino , Genótipo , Hispânico ou Latino/estatística & dados numéricos , Histamina/metabolismo , Humanos , Hipersensibilidade/etiologia , México , Transtornos de Enxaqueca/diagnóstico
17.
Medicine (Baltimore) ; 95(27): e4147, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27399132

RESUMO

BACKGROUND/AIMS: Several neuropathological, biochemical, and pharmacological data suggested a possible role of histamine in the etiopathogenesis of Parkinson disease (PD). The single nucleotide polymorphism (SNP) rs11558538 in the histamine N-methyltransferase (HNMT) gene has been associated with the risk of developing PD by several studies but not by some others. We carried out a systematic review that included all the studies published on PD risk related to the rs11558538 SNP, and we conducted a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS: We used several databases to perform the systematic review, the software Meta-DiSc 1.1.1 to perform the meta-analysis of the eligible studies, and the Q-statistic to test heterogeneity between studies. RESULTS: The meta-analysis included 4 eligible case-control association studies for the HNMT rs11558538 SNP and the risk for PD (2108 patients, 2158 controls). The frequency of the minor allele positivity showed a statistically significant association with a decreased risk for PD, both in the total series and in Caucasians. Although homozygosity for the minor allele did not reach statistical significance, the test for trend indicates the occurrence of a gene-dose effect. Global diagnostic odds ratios (95% confidence intervals) for rs11558538T were 0.61 (0.46-0.81) for the total group, and 0.63 (0.45-0.88) for Caucasian patients. CONCLUSION: The present meta-analysis confirms published evidence suggesting that the HNMT rs11558538 minor allele is related to a reduced risk of developing PD.


Assuntos
Histamina N-Metiltransferase/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Humanos , Fatores de Risco
18.
Allergol Immunopathol (Madr) ; 44(5): 433-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27255477

RESUMO

BACKGROUND: It has been suggested that polymorphisms of histamine metabolising enzymes can be a risk factor for developing histamine-involving diseases. The aim of the present study is to research the possible association between two functional single nucleotide polymorphisms (SNPs): C314T in the Histamine-N-Methyl Transferase gene and C2029G in the Diamine Oxidase gene, with the severity of allergic rhinitis and the number of allergic diseases, in a group of allergic Mexican children. METHODS: We studied 154 unrelated allergic children. SNPs were analysed by RT-PCR. The total serum IgE was measured by chemiluminescence and the serum histamine by ELISA. We used logistic regression analysis to determine OR. RESULTS: Patients carrying the mutant allele for any SNP had more risk to develop higher rhinitis severity or a bigger number of allergic diseases. Haplotype analysis revealed that this effect is synergistic. In patients carrying one or two mutant alleles, serum histamine levels were higher than those of patients carrying only wild alleles. Serum IgE levels were not associated with the presence of mutant alleles. CONCLUSION: The presence of these SNPs in patients with allergic rhinitis can lead to higher serum histamine, therefore to a higher risk of developing more severe symptoms or more associated allergic diseases, even if the serum IgE remains low.


Assuntos
Amina Oxidase (contendo Cobre)/genética , Histamina N-Metiltransferase/genética , Rinite Alérgica/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Progressão da Doença , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Histamina/sangue , Humanos , Imunoglobulina E/sangue , Masculino , México , Polimorfismo de Nucleotídeo Único
19.
Biomed Res Int ; 2016: 1208476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989676

RESUMO

The pathophysiological functions of cardiac histamine level and related histamine receptors during the development of chronic heart failure (CHF) were intensively investigated previously. However, the relevance of polymorphisms in histamine-related genes, such as HRH2, HRH3, DAO, and HNMT, with CHF remains largely neglected. This study herein aims to analyze the clinical associations of polymorphisms in those genes with CHF risk. A total of 333 unrelated Chinese Han CHF patients and 354 ethnicity-matched healthy controls were recruited and 11 single nucleotide polymorphisms (SNPs) were genotyped. We found that the HRH3 rs3787429 polymorphism was associated with CHF risk (p < 0.001). The T allele of rs3787429 exhibited protective effect against CHF under the dominant (ORs = 0.455; 95% CIs = 0.322-0.642) and additive models (ORs = 0.662; 95% CIs = 0.523-0.838), while, for SNPs in HRH2, DAO, and HNMT, no significant associations were observed in the present study. These findings for the first time screen out one SNP (rs3787429) of HRH3 gene that was significantly associated with CHF in Chinese Han population, which may be a novel biomarker for personal prevention and treatment of CHF and provides novel highlights for investigating the contribution of this disease.


Assuntos
D-Aminoácido Oxidase/genética , Insuficiência Cardíaca/genética , Histamina N-Metiltransferase/genética , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos H3/genética , Receptores Histamínicos/genética , Adulto , Idoso , Doença Crônica , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos , Insuficiência Cardíaca/patologia , Histamina/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Histamínicos H4
20.
Hum Mol Genet ; 24(20): 5697-710, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206890

RESUMO

Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.


Assuntos
Genes Recessivos , Histamina N-Metiltransferase/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Criança , Pré-Escolar , Simulação por Computador , Análise Mutacional de DNA , Exoma , Feminino , Histamina N-Metiltransferase/metabolismo , Humanos , Lactente , Deficiência Intelectual/enzimologia , Iraque , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Turquia , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA