RESUMO
PURPOSE: Since 2004, in the frame of the care pathway, our Research Unit has replied to the demand of expertise of radiation oncologists about the individual radiosensitivity of some of their patients. This procedure, called COPERNIC, is based on a skin biopsy and the radiation-induced nucleoshuttling of the ATM protein (the RIANS model), a major actor of DNA break repair and signaling. In 2016, with the first 117COPERNIC fibroblast lines, we obtained a significant correlation between the maximum number of the nuclear ATM foci, pATMmax, and the CTCAE severity grade of the post-radiotherapy tissue reactions. In this study, we propose to verify the validity of our previous findings with a new COPERNIC data subset obtained in the 2014-2024 period. MATERIALS AND METHODS: We applied a standard immunofluorescence technique to quiescent COPERNIC fibroblasts to assess, after 2Gy, the level of micronuclei, γH2AX and pATM foci. The 117 COPERNIC data published in 2016 were considered as the reference data subset. A new COPERNIC data subset composed of 133fibroblast cell lines was considered as the validating data subset. RESULTS: Our data showed that spontaneous or residual micronuclei levels, and residual γH2AX foci levels cannot predict CTCAE grades. Conversely, the linear formula linking the maximal number of pATM foci and the corresponding CTCAE grade and obtained in 2016 from the reference data subset fitted well the validating data. CONCLUSIONS: The maximal number of pATM foci appears to be one of the most reliable biomarkers for predicting post-radiotherapy radiotoxicity.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Fibroblastos , Histonas , Tolerância a Radiação , Humanos , Fibroblastos/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Histonas/metabolismo , Histonas/análise , Pele/efeitos da radiação , Lesões por Radiação/etiologia , Biópsia , ImunofluorescênciaRESUMO
Histones and their posttranslational modifications (PTMs) are critical regulators of gene expression. Differentiation, environmental stressors, xenobiotics, and major human diseases cause significant changes in histone variants and PTMs. Western blotting is the mainstay methodology for detection of histones and their PTMs in the majority of studies. Surprisingly, despite their high abundance in cells, immunoblotting of histones typically involves loading of large protein amounts that are normally used for detection of sparse cellular proteins. We systematically examined technical factors in the Western-blotting-based detection of human histones with >30 antibodies. We found that under multiple protein transfer conditions, many histone epitopes on polyvinylidene fluoride (PVDF) membranes had a very low antibody accessibility, which was dramatically increased by the addition of a simple denaturation step. Denaturation of membrane-bound proteins also enhanced the specificity of some histone antibodies. In comparison to standard PVDF membranes, the sensitivity of histone detection on standard nitrocellulose membranes was typically much higher, which was further increased by the inclusion of the same denaturation step. Optimized protocols increased by >100-times detection sensitivity for the genotoxic marker γ-H2AX with two monoclonal antibodies. The impact of denaturation and nitrocellulose use varied for different histones, but for each histone, it was generally similar for antibodies targeting N-terminal and C-terminal regions. In summary, denaturation of membrane-bound histones strongly improves their detection by Westerns, resulting in more accurate measurements and permitting analyses with small biological samples.
Assuntos
Histonas , Histonas/química , Histonas/metabolismo , Histonas/análise , Humanos , Western Blotting , Polivinil/química , Polímeros de FluorcarbonetoRESUMO
BACKGROUND: A predictive assay for late radiation toxicity would allow more personalized treatment planning, reducing the burden of toxicity for the more sensitive minority, and improving the therapeutic index for the majority. In a previous study in prostate cancer patients, the γ-H2AX foci decay ratio (γ-FDR) was the strongest predictor of late radiation toxicity. The current study aimed to validate this finding in a more varied group of patients with pelvic cancer. Additionally, the potential correlation between the γ-FDR and patient-reported outcomes was investigated. METHODS: Prostate and gynecological cancer patients with ≥ 24 months of follow-up were included in the current analysis. Toxicity was evaluated by physician (CTCAE version 4) and patient (EORTC questionnaires). γ-FDRs were determined in ex vivo irradiated lymphocytes. Correlation between γ-FDR and toxicity was assessed using both linear and logistic regression analyses. The highest toxicity grade recorded during follow-up was used. The association between global quality of life and γ-FDR was tested by comparing the change in quality of life over time in patients with γ-FDR < or ≥ 3.41, a previously established threshold. RESULTS: Eighty-eight patients were included. Physician-assessed and patient-reported cumulative grade ≥ 2 toxicity was 25% and 29%, respectively; which is much lower than in the previous cohort (i.e., 51% CTCAE grade ≥ 2). Patients with toxicity exhibited less favorable dose-volume parameters. In men, these parameters showed significant improvement compared to the previous cohort. The proportion of patients with a low γ-FDR increased with severity of toxicity, but this trend was not statistically significant. In addition, a γ-FDR < 3.41 was not correlated with the development of moderate to severe toxicity. Post-treatment decline in global quality of life was minimal, and similar for patients with γ-FDR < or ≥ 3.41. CONCLUSIONS: In the present study, the γ-H2AX foci decay ratio could not be validated as a predictor of late radiation toxicity in patients with pelvic cancer. Improved radiotherapy techniques with smaller irradiated bladder and bowel volumes have probably resulted in less toxicities. Future studies on genetic markers of toxicity should be powered on these lower incidences. We further recommend taking persistency, next to severity, into consideration.
Assuntos
Histonas , Neoplasias da Próstata , Qualidade de Vida , Lesões por Radiação , Radioterapia Guiada por Imagem , Humanos , Masculino , Feminino , Idoso , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/efeitos adversos , Pessoa de Meia-Idade , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Histonas/genética , Histonas/análise , Lesões por Radiação/etiologia , Idoso de 80 Anos ou mais , Neoplasias dos Genitais Femininos/radioterapia , Adulto , Seguimentos , Neoplasias Pélvicas/radioterapia , Biomarcadores Tumorais/genética , PrognósticoRESUMO
We report the development of an open-source Python application that provides quantitative and qualitative information from deconvoluted liquid-chromatography top-down mass spectrometry (LC-TDMS) data sets. This simple-to-use program allows users to search masses-of-interest across multiple LC-TDMS runs and provides visualization of their ion intensities and elution characteristics while quantifying their abundances relative to one another. Focusing on proteoform-rich histone proteins from the green microalga Chlamydomonas reinhardtii, we were able to quantify proteoform abundances across different growth conditions and replicates in minutes instead of hours typically needed for manual spreadsheet-based analysis. This resulted in extending previously published qualitive observations on Chlamydomonas histone proteoforms into quantitative ones, leading to an exciting new discovery on alpha-amino termini processing exclusive to histone H2A family members. Lastly, the script was intentionally developed with readability and customizability in mind so that fellow mass spectrometrists can modify the code to suit their lab-specific needs.
Assuntos
Chlamydomonas reinhardtii , Histonas , Espectrometria de Massas , Software , Histonas/química , Histonas/análise , Espectrometria de Massas/métodos , Chlamydomonas reinhardtii/química , Cromatografia Líquida/métodosRESUMO
The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells. The study also considered the use of nanoliquid chromatography (LC) and traditional methods: LC-TIMS-PASEF-ToF MS/MS vs nLC-TIMS-PASEF-ToF MS/MS vs nLC-MS/MS. The addition of TIMS and PASEF-MS/MS increased the number of detected peptides due to the added separation dimension. All three methods showed high reproducibility and low RSD in the MS domain (<5 ppm). While the LC, nLC and TIMS separations showed small RSD across samples, the accurate mobility (1/K0) measurements (<0.6% RSD) increased the confidence of peptide assignments. Trends were observed in the retention time and mobility concerning the number and type of PTMs (e.g., ac, me1-3) and their corresponding unmodified, propionylated peptide that aided in peptide assignment. Mobility separation permitted the annotation of coeluting structural and positional isomers and compared with nLC-MS/MS showed several advantages due to reduced chemical noise.
Assuntos
Histonas , Espectrometria de Mobilidade Iônica , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Histonas/química , Histonas/análise , Humanos , Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica/métodos , Proteômica/métodos , Sequência de Aminoácidos , Reprodutibilidade dos Testes , Linhagem Celular Tumoral , Dados de Sequência MolecularRESUMO
The DNA damage response is a genetic information safeguard that protects cells from perpetuating damaged DNA. The characterization of the proteins that cooperate in this process allows the identification of alternative targets for therapeutic intervention in several diseases, such as cancer, aging-related diseases, and chronic inflammation. The Proximity Ligand Assay (PLA) emerged as a tool for estimating interaction between proteins as well as spatial proximity among organelles or cellular structures and allows the temporal localization and co-localization analysis under stress conditions, for instance. The method is simple because it is similar to conventional immunofluorescence and allows the staining of an organelle, cellular structure, or a specific marker such as mitochondria, endoplasmic reticulum, PML bodies, or DNA double-strand marker, yH2AX simultaneously. The phosphorylation of the S139 at Histone 2A variant, H2AX, then referred to as yH2AX, is widely used as a very sensitive and specific marker of DNA double-strand breaks. Each focus of yH2AX staining corresponds to one break in DNA that occurs a few minutes after the damage. The analysis of changes in yH2AX foci is the most common assay for studying if the protein of interest is implicated in DNA damage response (DDR). Whether a direct role in the DNA damage site is expected, fluorescence microscopy is used to verify the colocalization of the protein of interest with yH2AX foci. However, except for the new super-resolution fluorescence methods, to conclude, the local interaction with DNA damage sites can be a little subjective. Here, we show an assay to evaluate the localization of proteins in the DDR pathway using yH2AX as a marker of the damage site. This assay can be used to characterize the temporal localization under different insults that cause DNA damage.
Assuntos
Dano ao DNA , Histonas , Humanos , Histonas/metabolismo , Histonas/análise , Ligantes , Quebras de DNA de Cadeia DuplaRESUMO
Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.
Assuntos
Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Histonas , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem , Histonas/análise , Espectrometria de Massas em Tandem/métodos , Eletroforese Capilar/métodos , Proteômica/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Animais , HumanosRESUMO
Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.
Assuntos
Dano ao DNA , Testes de Mutagenicidade , Mutagênicos , Mutagênicos/análise , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos , Humanos , Análise de Alimentos/métodos , Chá/química , Biomarcadores , Solanum lycopersicum/química , Histonas/metabolismo , Histonas/análise , Café/química , Spinacia oleracea/química , Rad51 Recombinase/metabolismoRESUMO
PURPOSE: The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS: Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS: Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS: DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.
Assuntos
Dano ao DNA , Esferoides Celulares , Dano ao DNA/efeitos da radiação , Humanos , Esferoides Celulares/efeitos da radiação , Histonas/metabolismo , Histonas/análise , Consumo de Oxigênio/efeitos da radiação , Relação Dose-Resposta à Radiação , Tratamentos com Preservação do Órgão/métodosRESUMO
Significance: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale. Aim: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data. Approach: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler. Results: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging. Conclusions: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
Assuntos
Aprendizado Profundo , Imagem Individual de Molécula , Animais , Imagem Individual de Molécula/métodos , Humanos , Chlorocebus aethiops , Células COS , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/análise , Algoritmos , Histonas/química , Histonas/análiseRESUMO
Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.
Assuntos
Biomarcadores , Histonas , Acidente Vascular Cerebral , Humanos , Biomarcadores/análise , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Análise de Célula Única , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/metabolismo , Transcriptoma , Histonas/análiseRESUMO
OBJECTIVE: Previous studies have reported that neutrophil extracellular traps (NETs) have been identified to be involved in thrombosis, but the clinical value in chronic heart failure (CHF) patients with venous thrombosis is unclear. This study focused on the expression level of NETs in the peripheral blood of patients with CHF complicated with venous thrombosis and its clinical value. METHODS: 80 patients with CHF were included and divided into 2 groups according to the occurrence of venous thrombosis, and the expression levels of NETs in peripheral venous blood and lesion veins of the patients were detected through fluorescent staining. Myeloperoxidase-DNA (MPO-DNA) and citrullinated histone H3 (CitH3), markers of NETs, were detected by enzyme linked immunosorbent assay kit. The receiver operating characteristic (ROC) curve was used to analyze the value of peripheral venous blood NETs in the diagnosis of venous thrombosis in CHF patients, while the relationship between NETs in peripheral and lesion veins was analyzed by a unitary linear regression model. RESULTS: The results showed that the concentration of NETs, MPO-DNA, and CitH3 in CHF patients combined with venous thrombosis was markedly higher than that in patients without venous thrombosis, and the concentration of NETs, MPO-DNA, and CitH3 in lesion venous blood was notably higher than that in peripheral venous blood. Binary logistics regression analysis showed that NETs in peripheral venous blood were an independent risk factor for venous thrombosis in patients with heart failure. The unitary linear regression model fitted well, indicating a notable positive correlation between NETs concentrations in peripheral and lesion veins. The area under the ROC curve for diagnosing venous thrombosis was 0.85, indicating that peripheral blood NETs concentration levels could effectively predict venous thrombosis in CHF patients. CONCLUSION: The expression level of NETs was high in the peripheral blood of CHF patients combined with venous thrombosis and was the highest in lesion venous blood. NETs levels in peripheral blood had the value of diagnosing venous thrombosis in CHF patients, and the concentrations of NETs in peripheral and lesion veins are markedly positively correlated.
Assuntos
Armadilhas Extracelulares , Insuficiência Cardíaca , Trombose Venosa , Humanos , Armadilhas Extracelulares/química , Armadilhas Extracelulares/metabolismo , Relevância Clínica , Neutrófilos , Histonas/análise , Histonas/metabolismo , Trombose Venosa/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , DNARESUMO
H2b3b is one of the histone H2b isoforms that differs from canonical H2b by five to six amino acids. Previously, we identified H3t as the testis-specific histone H3 variant located in histone cluster 3, which is also the site of H2b3b. In this study, we produced monoclonal antibodies against H2b3b, using the iliac rat lymph node method for rat antibody and the immunochamber method for rabbit antibody. Immunoblot analysis confirmed that our antibodies could specifically discriminate between H2b3b and canonical H2b. Moreover, immunostaining revealed colocalization with a testicular stem cell marker, Plzf, but not with a meiotic marker, Sycp. This indicated that H2b3b is expressed in spermatogenic cells before meiosis. Our monoclonal antibodies enable further studies to reveal specific functions of H2b3b during spermatogenesis. We also hope that the established method will lead to the production of antibodies that can identify other H2b isoforms.
Assuntos
Anticorpos Monoclonais , Histonas , Masculino , Coelhos , Ratos , Animais , Histonas/análise , Histonas/química , Histonas/metabolismo , Testículo/química , Testículo/metabolismo , Espermatogênese , Isoformas de Proteínas/metabolismoRESUMO
Oral epithelial dysplasia (OED) is diagnosed and graded using a range of histological features, making grading subjective and challenging. Mitotic counting and phosphohistone-H3 (PHH3) staining have been used for the prognostication of various malignancies; however, their importance in OED remains unexplored. This study conducts a quantitative analysis of mitotic activity in OED using both haematoxylin and eosin (H&E)-stained slides and immunohistochemical (IHC) staining for PHH3. Specifically, the diagnostic and prognostic importance of mitotic number, mitotic type and intra-epithelial location is evaluated. Whole slide images (WSI) of OED (n = 60) and non-dysplastic tissue (n = 8) were prepared for analysis. Five-year follow-up data was collected. The total number of mitosis (TNOM), mitosis type and intra-epithelial location was manually evaluated on H&E images and a digital mitotic count performed on PHH3-stained WSI. Statistical associations between these features and OED grade, malignant transformation and OED recurrence were determined. Mitosis count increased with grade severity (H&E: p < 0.005; IHC: p < 0.05), and grade-based differences were seen for mitosis type and location (p < 0.05). The ratio of normal-to-abnormal mitoses was higher in OED (1.61) than control (1.25) and reduced with grade severity. TNOM, type and location were better predictors when combined with histological grading, with the most prognostic models demonstrating an AUROC of 0.81 for transformation and 0.78 for recurrence, exceeding conventional grading. Mitosis quantification and PHH3 staining can be an adjunct to conventional H&E assessment and grading for the prediction of OED prognosis. Validation on larger multicentre cohorts is needed to establish these findings.
Assuntos
Biomarcadores Tumorais , Histonas , Humanos , Histonas/análise , Prognóstico , Índice Mitótico/métodos , Biomarcadores Tumorais/análise , Gradação de Tumores , Mitose , FosforilaçãoRESUMO
Background: The pathological mechanism of heat stroke (HS) involves the acute phase response, unbalanced immunological/inflammatory reactions, and coagulation initiation, especially platelet activation. Although exosomes contain proteins involved in these biological processes, their protein cargo levels and potential roles in HS remain unknown. This study explored the serum exosome protein expression patterns after HS and their potential roles in the pathogenesis of HS. Methods: Blood samples were collected from ten patients diagnosed with HS upon admission to the intensive care unit (six with severe HS and four with mild HS). Samples from six healthy volunteers were included as control. Using ultracentrifugation, exosomes were prudently isolated, and their protein contents were profiled using liquid chromatography-tandem mass spectrometry analysis with isobaric tags for relative and absolute quantification-based proteomics. Results: Compared with healthy volunteers, patients with HS showed significant changes in the levels of 33 exosomal proteins (23 upregulated and 10 downregulated). The most upregulated proteins included serum amyloid A-1 (SAA-1), von Willebrand factor (vWF), S100A8, and histone H3. In addition, SAA-1, vWF, platelet membrane glycoprotein, S100A8, and histone H3 were more enriched in the exosomes from patients with severe HS than from those with mild HS. Gene ontology analysis revealed that the HS-modulated exosomal proteins were mostly related to inflammatory response, including the acute-phase response, platelet activation/degranulation, and innate immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of proteins in the IL-17 signaling pathway, platelet activation, neutrophil extracellular trap formation, Fc epsilon RI signaling pathway, chemokine signaling pathway, and NOD-like receptor signaling pathway, among others. Several serum exosomal proteins, including SAA-1, vWF, and S100A8, which are related to the acute phase, inflammatory response, and platelet activation, were confirmed to be elevated in patients with HS, and were significantly correlated with disease severity, organ dysfunction, and death. Conclusion: Overall, this study explores the potential role of the serum exosomal proteome in the inflammatory response and platelet activation in HS, suggests the pathological mechanisms underlying HS-induced injuries, and recommends reliable exosomal biomarkers for predicting HS prognosis.
Assuntos
Exossomos , Golpe de Calor , Insolação , Humanos , Reação de Fase Aguda/metabolismo , Histonas/análise , Exossomos/química , Fator de von Willebrand/análise , Proteômica/métodos , Proteínas Sanguíneas/análise , Ativação Plaquetária , Golpe de Calor/metabolismoRESUMO
Flat cultures of mammalian cells are a widely used in vitro approach for understanding cell physiology, but this system is limited in modeling solid tissues due to unnaturally rapid cell replication. This is particularly challenging when modeling mature chromatin, as fast replicating cells are frequently involved in DNA replication and have a heterogeneous polyploid population. Presented below is a workflow for modeling, treating, and analyzing quiescent chromatin modifications using a three-dimensional (3D) cell culture system. Using this protocol, hepatocellular carcinoma cell lines are grown as reproducible 3D spheroids in an incubator providing active nutrient diffusion and low shearing forces. Treatment with sodium butyrate and sodium succinate induced an increase in histone acetylation and succinylation, respectively. Increases in levels of histone acetylation and succinylation are associated with a more open chromatin state. Spheroids are then collected for isolation of cell nuclei, from which histone proteins are extracted for the analysis of their post-translational modifications. Histone analysis is performed via liquid chromatography coupled online with tandem mass spectrometry, followed by an in-house computational pipeline. Finally, examples of data representation to investigate the frequency and occurrence of combinatorial histone marks are shown.
Assuntos
Técnicas de Cultura de Células em Três Dimensões , Histonas , Fígado , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Cromatina/fisiologia , Cromatografia Líquida , Histonas/análise , Histonas/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Esferoides Celulares/metabolismoRESUMO
Epithelial proliferation in the rat mammary gland is recommended in regulatory guidelines as an endpoint for assessment of the in vivo carcinogenic potential of insulin analogues. Epithelial proliferation is traditionally assessed by immunohistochemical staining of a proliferation marker, for example, 5-bromo-2'-deoxyuridine (BrdU) or Ki67, followed by labor-intensive manual counting of positive and negative cells. The aim of this study was to develop and validate an approach for image analysis based on artificial intelligence, which can be used for quantification of proliferation in rat mammary gland, independent of the choice of proliferation marker. Furthermore, the aim was to compare the markers BrdU, Ki67, and phosphorylated histone H3 (PHH3). A sequence of image analysis applications were developed, which allowed for quantification of proliferative activity in the mammary gland epithelium. These endpoints agreed well with manually counted labeling indices, with correlation coefficients in the range ≈0.92-0.93. In addition, all three proliferation markers were significantly correlated and could detect the variation in epithelial proliferation during the estrous cycle. In conclusion, image analysis can be used to quantify epithelial proliferation in the rat mammary gland and thereby replace time-consuming manual counting. Furthermore, BrdU, Ki67, and PHH3 can be used interchangeably to assess proliferation.
Assuntos
Inteligência Artificial , Bromodesoxiuridina/análise , Epitélio/química , Histonas/análise , Antígeno Ki-67/análise , Glândulas Mamárias Animais/química , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Epitélio/metabolismo , Feminino , Histonas/metabolismo , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, have been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodeling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterized tissue specific expression and cellular localization patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.
Assuntos
Epigênese Genética/fisiologia , Lagartos/fisiologia , Processos de Determinação Sexual/fisiologia , Temperatura , Animais , Montagem e Desmontagem da Cromatina/genética , Feminino , Gônadas/química , Histonas/análise , Imuno-Histoquímica/métodos , Imuno-Histoquímica/veterinária , Histona Desmetilases com o Domínio Jumonji/análise , Lagartos/genética , Masculino , Metilação , Proteínas de Ligação a RNA/análise , Processos de Determinação Sexual/genéticaRESUMO
Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.
Assuntos
Arabidopsis/genética , Centrômero/genética , Cromossomos de Plantas/genética , Epigênese Genética , Arabidopsis/ultraestrutura , Centrômero/química , Metilação de DNA , DNA Satélite , Evolução Molecular , Genoma de Planta , Histonas/análise , Meiose , Recombinação Genética , Retroelementos , Análise de Sequência de DNARESUMO
The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.