Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 418, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012538

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.


Assuntos
4-Butirolactona , Biofilmes , Caenorhabditis elegans , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/metabolismo , Antibacterianos/farmacologia , Perfilação da Expressão Gênica , Homosserina/análogos & derivados , Homosserina/metabolismo , Homosserina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
2.
Vet Res ; 55(1): 80, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886823

RESUMO

Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.


Assuntos
Galactose , Percepção de Quorum , Streptococcus suis , Streptococcus suis/fisiologia , Galactose/metabolismo , Percepção de Quorum/fisiologia , Virulência , Animais , Cápsulas Bacterianas/metabolismo , Lactonas/metabolismo , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Homosserina/análogos & derivados , Homosserina/metabolismo , Polissacarídeos Bacterianos/metabolismo
3.
Virulence ; 15(1): 2350904, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725098

RESUMO

Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Norepinefrina , Percepção de Quorum , Transdução de Sinais , Percepção de Quorum/efeitos dos fármacos , Fusobacterium nucleatum/patogenicidade , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Animais , Neoplasias Colorretais/microbiologia , Norepinefrina/farmacologia , Camundongos , Humanos , Progressão da Doença , Infecções por Fusobacterium/microbiologia , Virulência , Homosserina/análogos & derivados , Homosserina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Lactonas
4.
Environ Res ; 256: 119244, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810822

RESUMO

Industrial wastewater is a major environmental concern due to its high copper content, which poses significant toxicity to microbial life. Autoinducer-2 (AI-2) can participate in the inter- and intra-species communication and regulate the physiological functions of different bacterial species by producing AI-2 signal molecules. However, there are few research reports on the luxS gene and lsr operon functions for AI-2 in bacteria with a certain tolerance to copper. This study delves into the potential of quorum sensing mechanisms, particularly the AI-2 system, for enhancing microbial resistance to copper toxicity in Klebsiella michiganensis (KM). We detail the critical roles of the luxS gene in AI-2 synthesis and the lsr operon in AI-2 uptake, demonstrating their collective impact on enhancing copper resistance. Our findings show that mutations in the lsr operon, alongside the knockout of the luxS gene in KM strain (KMΔluxSΔlsr), significantly impair the strain's motility (p < 0.0001) and biofilm formation (p < 0.01), underscoring the operon's role in AI-2 transport. These genetic insights are pivotal for developing bioremediation strategies aimed at mitigating copper pollution in wastewater. By elucidating the mechanisms through which KM modulates copper resistance, this study highlights the broader ecological significance of leveraging microbial quorum sensing pathways for sustainable wastewater management.


Assuntos
Proteínas de Bactérias , Liases de Carbono-Enxofre , Cobre , Klebsiella , Óperon , Percepção de Quorum , Cobre/toxicidade , Percepção de Quorum/efeitos dos fármacos , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Klebsiella/genética , Klebsiella/efeitos dos fármacos , Klebsiella/metabolismo , Homosserina/análogos & derivados , Homosserina/metabolismo , Lactonas/metabolismo
5.
Environ Int ; 188: 108768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788416

RESUMO

Symbiotic microorganisms play critical ecophysiological roles that facilitate the maintenance of coral health. Currently, information on the gene and protein pathways contributing to bleaching responses is lacking, including the role of autoinducers. Although the autoinducer AI-1 is well understood, information on AI-2 is insufficient. Here, we observed a 3.7-4.0 times higher abundance of the AI-2 synthesis gene luxS in bleached individuals relative to their healthy counterparts among reef-building coral samples from the natural environment. Laboratory tests further revealed that AI-2 contributed significantly to an increase in coral bleaching, altered the ratio of potential probiotic and pathogenic bacteria, and suppressed the antiviral activity of specific pathogenic bacteria while enhancing their functional potential, such as energy metabolism, chemotaxis, biofilm formation and virulence release. Structural equation modeling indicated that AI-2 influences the microbial composition, network structure, and pathogenic features, which collectively contribute to the coral bleaching status. Collectively, our results offer novel potential strategies for coral conservation based on a signal manipulation approach.


Assuntos
Antozoários , Homeostase , Percepção de Quorum , Simbiose , Antozoários/microbiologia , Antozoários/fisiologia , Animais , Homosserina/análogos & derivados , Homosserina/metabolismo , Recifes de Corais , Lactonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
Biomolecules ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38672469

RESUMO

Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogenic bacterium that causes huge economic losses to the pig farming industry and considerably threatens human health. The quorum sensing (QS) system plays a crucial role in the survival and pathogenesis of pathogenic bacteria. Hence, it is a viable approach to prevent ExPEC infection by compromising the QS system, particularly the LuxS/AI-2 system. In this study, we investigated the effects of baicalin on the LuxS/AI-2 system of ExPEC. Baicalin at concentrations of 25, 50, and 100 µg/mL significantly diminished the survival ability of ExPEC in hostile environments and could inhibit the biofilm formation and autoagglutination ability in ExPEC. Moreover, baicalin dose-dependently decreased the production of AI-2 and down-regulated the expression level of luxS in PCN033. These results suggest that baicalin can weaken the virulence of PCN033 by inhibiting the LuxS/AI-2 system. After the gene luxS was deleted, AI-2 production in PCN033 was almost completely eliminated, similar to the effect of baicalin on the production of AI-2 in PCN033. This indicates that baicalin reduced the production of AI-2 by inhibiting the expression level of luxS in ExPEC. In addition, the animal experiment further showed the potential of baicalin as a LuxS/AI-2 system inhibitor to prevent ExPEC infection. This study highlights the potential of baicalin as a natural quorum-sensing inhibitor for therapeutic applications in preventing ExPEC infection by targeting the LuxS/AI-2 system.


Assuntos
Proteínas de Bactérias , Liases de Carbono-Enxofre , Escherichia coli Extraintestinal Patogênica , Flavonoides , Homosserina , Homosserina/análogos & derivados , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Suínos , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Homosserina/metabolismo , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Lactonas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/tratamento farmacológico
7.
J Periodontal Res ; 59(3): 576-588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411269

RESUMO

OBJECTIVE: The aim of this study was to investigate the association between autoinducer-2 (AI-2) of oral microbial flora and the alveolar bone destruction in periodontitis to determine if AI-2 may have the potential that monitor periodontitis and predict bone loss. BACKGROUND: Plaque biofilm was the initiating factor of periodontitis and the essential factor of periodontal tissue destruction. The formation of biofilms depended on the complex regulation of the quorum sensing (QS) system, in which bacteria could sense changes in surrounding bacterial density by secreting the autoinducer (AI) to regulate the corresponding physiological function. Most oral bacteria also communicated with each other to form biofilms administrating the QS system, which implied that the QS system of periodontal pathogens was related to periodontitis, but the specific relationship was unknown. METHOD: We collected the gingival crevicular fluid (GCF) samples and measured the concentration of AI-2 in samples using the Vibrio harveyi BB180 bioluminescent-reporter system. To explore the interaction between AI-2 and bone metabolism, we utilized AI-2 purified from Fusobacterium nucleatum to investigate the impact of F. nucleatum AI-2 on osteoclast differentiation. Moreover, we constructed murine periodontitis models and multi-species biofilm models to study the association between AI-2 and periodontal disease progression. RESULTS: The AI-2 concentration in GCF samples increased along with periodontal disease progression (p < .0001). F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner. In the periodontitis mice model, the CEJ-ABC distance in the F. nucleatum AI-2 treatment group was higher than that in the simple ligation group (p < .01), and the maxilla of the mice in the group exhibited significantly lower BMD and BV/TV values (p < .05). CONCLUSIONS: We demonstrated that the AI-2 concentration varied with the alveolar bone destruction in periodontitis, and it may have the potential for screening periodontitis. F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner and aggravated bone loss.


Assuntos
Perda do Osso Alveolar , Biofilmes , Fusobacterium nucleatum , Homosserina , Lactonas , Periodontite , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/metabolismo , Periodontite/microbiologia , Animais , Homosserina/análogos & derivados , Homosserina/metabolismo , Biofilmes/crescimento & desenvolvimento , Camundongos , Humanos , Líquido do Sulco Gengival/microbiologia , Líquido do Sulco Gengival/química , Masculino , Modelos Animais de Doenças , Osteoclastos , Percepção de Quorum , Feminino , Adulto , Diferenciação Celular , Pessoa de Meia-Idade , Microtomografia por Raio-X
8.
Front Cell Infect Microbiol ; 14: 1339131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379770

RESUMO

Streptococcus equi subsp. zooepidemicus (SEZ) is an opportunistic pathogen of both humans and animals. Quorum sensing (QS) plays an important role in the regulation of bacterial group behaviors. The aim of this study was to characterize the LuxS in SEZ and evaluate its impact on biofilm formation, pathogenesis and gene expression. The wild-type SEZ and its LuxS mutant (ΔluxS) were examined for growth, biofilm formation, virulence factors, and transcriptomic profiles. Our results showed that LuxS deficiency did not affect SEZ hemolytic activity, adhesion or capsule production. For biofilm assay demonstrated that mutation in the luxS gene significantly enhances biofilm formation, produced a denser biofilm and attached to a glass surface. RAW264.7 cell infection indicated that ΔluxS promoted macrophage apoptosis and pro-inflammatory responses. In mice infection, there was no significant difference in mortality between SEZ and ΔluxS. However, the bacterial load in the spleen of mice infected with ΔluxS was significantly higher than in those infected with SEZ. And the pathological analysis further indicated that spleen damage was more severe in the ΔluxS group. Moreover, transcriptomics analysis revealed significant alterations in carbon metabolism, RNA binding and stress response genes in ΔluxS. In summary, this study provides the first evidence of AI-2/LuxS QS system in SEZ and reveals its regulatory effects on biofilm formation, pathogenicity and gene expression.


Assuntos
Percepção de Quorum , Streptococcus equi , Humanos , Camundongos , Animais , Streptococcus equi/genética , Streptococcus equi/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Homosserina/metabolismo , Lactonas/metabolismo , Biofilmes
9.
Appl Microbiol Biotechnol ; 108(1): 127, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229305

RESUMO

For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 µm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.


Assuntos
Deltaproteobacteria , Euryarchaeota , Homosserina/metabolismo , Euryarchaeota/metabolismo , Polissacarídeos/metabolismo , Lactonas/metabolismo , Metano/metabolismo
10.
Bioresour Technol ; 395: 130318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219924

RESUMO

Quorum sensing potentially helps microorganisms adapt to antibiotic stress encountered in the environment. This experiment investigated the effect of acyl homoserine endolipid-like signaling molecules on microbial antibiotic resistance gene structures in aqueous sediments under florfenicol stress. Additional acyl homoserine endolipid-like signaling molecules (AHLs) alter the structure of multidrug resistance genes in florfenicol-stressed sediments, particularly the multidrug resistance efflux pump gene family. Prophages and integrative and conjugative elements (ICEs) determined the resistance genes structure, and pathways related to mobile genetic elements (MGEs) transfer may play an essential role in this process. The practical application of AHLs to regulate quorum sensing systems may alter bacterial stress responses to environmental florfenicol residues, thereby reducing the development of antibiotic resistance in the environment.


Assuntos
Homosserina , Tianfenicol , Tianfenicol/análogos & derivados , Homosserina/metabolismo , Tianfenicol/farmacologia , Percepção de Quorum/genética , Antibacterianos/farmacologia , Acil-Butirolactonas/metabolismo
11.
ACS Synth Biol ; 13(1): 282-299, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079538

RESUMO

A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.


Assuntos
Proteínas Repressoras , Transativadores , Transativadores/genética , Transativadores/metabolismo , Proteínas Repressoras/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , 4-Butirolactona/metabolismo , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Homosserina/metabolismo
12.
Chemosphere ; 344: 140384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806331

RESUMO

Quorum sensing (QS) have been explored extensively. However, most studies focused on N-acyl homoserine lactones (AHLs) participating in intraspecies QS. In this study, autoinducer-2 (AI-2, participating in interspecies QS) with different concentration was investigated for chain elongation in microbial electrosynthesis (MES). The results demonstrated that the R3 treatment, which involved adding 10 µM of 4,5-dihydroxy-2,3-pentanedione (DPD) in the reactor, exhibited the best performance. The concentration of caproate was increased by 66.88% and the redox activity of cathodic electroactive biofilms (EABs) was enhanced. Meanwhile, microbial community data indicated that Negativicutes relative abundance was increased obviously in R3 treatment. In this study, the transcriptome Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases were used to analyze the metabolic pathway of chain elongation involving fatty acid biosynthesis (FAB) pathway and reverse ß-oxidization (RBO) pathway. KEGG analysis revealed that fatty acid elongation metabolism (p < 0.001), tryptophan metabolism (p < 0.01), arginine and proline metabolism (p < 0.05) were significantly improved in R3 treatment. GO analysis suggested that R3 treatment mainly upregulated significantly transmembrane signaling receptor activity (p < 0.01), oxidoreductase activity (p < 0.05), and phosphorelay signal transduction (p < 0.05). Moreover, metatranscriptomic analyses also showed that R3 treatment could upregulate the LuxP extracellular receptor, LuxO transcriptional activator, LsrB periplasmic protein, and were beneficial to both FAB and RBO pathways. These findings provided a new insight into chain elongation in MES system.


Assuntos
Homosserina , Percepção de Quorum , Homosserina/metabolismo , Caproatos , Biofilmes , Lactonas/metabolismo , Redes e Vias Metabólicas
13.
Bioresour Technol ; 389: 129828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806363

RESUMO

L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.


Assuntos
Escherichia coli , Homosserina , Escherichia coli/genética , Escherichia coli/metabolismo , Homosserina/genética , Homosserina/metabolismo , Engenharia Metabólica , Fermentação , Divisão Celular
14.
Biotechnol Adv ; 69: 108260, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739275

RESUMO

L-methionine is an essential amino acid with versatile applications in food, feed, cosmetics and pharmaceuticals. At present, the production of L-methionine mainly relies on chemical synthesis, which conflicts with the concern over serious environmental problems and sustainable development goals. In recent years, microbial production of natural products has been amply rewarded with the emergence and rapid development of system metabolic engineering. However, efficient L-methionine production by microbial fermentation remains a great challenge due to its complicated biosynthetic pathway and strict regulatory mechanism. Additionally, the engineered production of L-methionine precursors, L-homoserine, O-succinyl-L-homoserine (OSH) and O-acetyl-L-homoserine (OAH), has also received widespread attention because they can be catalyzed to L-methionine via a high-efficiently enzymatic reaction in vitro, which is also a promising alternative to chemical route. This review provides a comprehensive overview on the recent advances in the microbial production of L-methionine and its precursors, highlighting the challenges and potential solutions for developing L-methionine microbial cell factories from the perspective of systems metabolic engineering, aiming to offer guidance for future engineering.


Assuntos
Engenharia Metabólica , Metionina , Metionina/metabolismo , Homosserina/metabolismo , Vias Biossintéticas , Fermentação
15.
Curr Microbiol ; 80(8): 268, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402084

RESUMO

The host transcriptional activator Early growth response 1 (EGR1) plays a vital role in cell cycle and differentiation, cell proliferation, and regulation of cytokines and several growth factors. It is an immediate-early gene that is expressed as an initial response to various environmental stimuli. Bacterial infection is one such factor that can trigger the expression of EGR1 in host. Therefore, it is imperative to understand expression of EGR1 during early stages of host-pathogen interaction. Streptococcus pyogenes is an opportunistic bacteria causing skin and respiratory tract infections in humans. The quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (Oxo-C12), not synthesised by S. pyogenes, can be sensed by S. pyogenes leading to molecular changes in the pathogen. In this study, we investigated the role of Oxo-C12 on EGR1 regulation in lung epithelial and murine macrophage cell line upon S. pyogenes infection. We report that Oxo-C12 sensitised S. pyogenes upregulates the transcriptional expression of EGR1 through ERK1/2 pathway. It was observed that EGR1 was not involved in the intial attachment of S. pyogenes to A549 cells. However, inhibition of EGR1 in macrophage cell line, J774A.1, through the ERK1/2 pathway resulted in decreased adhesion of S. pyogenes. The EGR1 upregulation by Oxo-C12 sensitised S. pyogenes plays a vital role in enhancing the survival of S. pyogenes in murine macrophages, leading to persistent infection. Thus, understanding the molecular modulation in the host during bacterial infection will further help develop therapeutics to target specific sites.


Assuntos
Acil-Butirolactonas , Streptococcus pyogenes , Camundongos , Humanos , Animais , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Percepção de Quorum , Homosserina/metabolismo , Homosserina/farmacologia , 4-Butirolactona/metabolismo , Pseudomonas aeruginosa/metabolismo
16.
Microb Pathog ; 181: 106183, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263449

RESUMO

Streptococcus suis (S. suis) regulates biofilm formation through LuxS/AI-2 quorum sensing system, increasing drug resistance and exacerbating infection. The anti-hyperglycaemic agent metformin has anti-bacterial and anti-biofilm activities. This study aimed to investigate the anti-biofilm and anti-quorum sensing activity of metformin in S. suis. We first determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of metformin on S. suis. The results indicated that metformin showed no obvious inhibitory or bactericidal effect. Crystal violet staining showed that metformin significantly inhibited the formation of S. suis biofilm at sub-MIC concentration, which was also confirmed by scanning electron microscopy. Then, we quantified the AI-2 signal molecules in S. suis, and the results showed that metformin had a significant inhibitory effect on the production of AI-2 signal in S. suis. Inhibition of enzyme activity and molecular docking experiments showed that metformin has a significant binding activity to LuxS protein. In addition, qRT-PCR results showed that metformin significantly down-regulated the expression of AI-2 synthesis-related genes luxS and pfs, and adhesion-related genes luxS, pfs, gapdh, sly, fbps, and ef. Western blotting also showed that metformin significantly reduced the expression of LuxS protein. Our study suggests that metformin seems to be a suitable candidate for the inhibition of S. suis LuxS/AI-2 QS system and prevention of biofilm formation, which provided a new idea for the prevention and control of S. suis.


Assuntos
Streptococcus suis , Streptococcus suis/metabolismo , Simulação de Acoplamento Molecular , Homosserina/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de Quorum , Biofilmes , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/farmacologia , Lactonas/metabolismo
17.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204848

RESUMO

Quorum sensing (QS) is a widespread mechanism of environment sensing and behavioural coordination in bacteria. At its core, QS is based on the production, sensing and response to small signalling molecules. Previous work with Pseudomonas aeruginosa shows that QS can be used to achieve quantitative resolution and deliver a dosed response to the bacteria's density environment, implying a sophisticated mechanism of control. To shed light on how the mechanistic signal components contribute to graded responses to density, we assess the impact of genetic (AHL signal synthase deletion) and/or signal supplementation (exogenous AHL addition) perturbations on lasB reaction-norms to changes in density. Our approach condenses data from 2000 timeseries (over 74 000 individual observations) into a comprehensive view of QS-controlled gene expression across variation in genetic, environmental and signal determinants of lasB expression. We first confirm that deleting either (∆lasI, ∆rhlI) or both (∆lasIrhlI) AHL signal synthase gene attenuates QS response to density. In the ∆rhlI background we show persistent yet attenuated density-dependent lasB expression due to native 3-oxo-C12-HSL signalling. We then test if density-independent quantities of AHL signal (3-oxo-C12-HSL, C4-HSL) added to the WT either flatten or increase responsiveness to density and find that the WT response is robust to all tested concentrations of signal, alone or in combination. We then move to progressively supplementing the genetic knockouts and find that cognate signal supplementation of a single AHL signal (∆lasI +3-oxo-C12-HSL, ∆rhlI +C4HSL) is sufficient to restore the ability to respond in a density-dependent manner to increasing density. We also find that dual signal supplementation of the double AHL synthase knockout restores the ability to produce a graded response to increasing density, despite adding a density-independent amount of signal. Only the addition of high concentrations of both AHLs and PQS can force maximal lasB expression and ablate responsiveness to density. Our results show that density-dependent control of lasB expression is robust to multiple combinations of QS gene deletion and density-independent signal supplementation. Our work develops a modular approach to query the robustness and mechanistic bases of the central environmental sensing phenotype of quorum sensing.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homosserina/metabolismo , Pseudomonas aeruginosa/metabolismo , Suplementos Nutricionais
18.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37061784

RESUMO

AIMS: This study aimed to functionally identify the potential L-homoserine transporters in Escherichia coli, and to generate the promising beneficial mutants by targeted directed evolution for improving the robustness and efficiency of microbial cell factories. METHODS AND RESULTS: By constructing a series of gene deletion and overexpression strains, L-homoserine tolerance assays revealed that RhtA was an efficient and major L-homoserine exporter in E. coli, whereas RhtB and RhtC exhibited relatively weak transport activities for L-homoserine. Real-time RT-PCR analysis suggested that the expression levels of these three target mRNAs were generally variably enhanced when cells were subjected to L-homoserine stress. Based on in vivo continuous directed evolution and growth-couple selections, three beneficial mutations of RhtA exporter (A22V, P119L, and T235I) with clearly increased tolerance against L-homoserine stress were quickly obtained after two rounds of mutagenesis-selection cycles. L-homoserine export assay revealed that the RhtA mutants exhibited different degrees of improvement in L-homoserine export capacity. Further studies suggested that a combination of these beneficial sites led to synergistic effects on conferring L-homoserine-resistance phenotypes. Moreover, the introduction of RhtA beneficial mutants into the L-homoserine-producing strains could facilitate increased amounts of L-homoserine in the shake-flask fermentation. CONCLUSIONS: In this study, we provided further evidence that RhtA serves as a major L-homoserine exporter in E. coli, and obtained several RhtA beneficial mutants, including A22V, P119L, and T235I that contributed to improving the L-homoserine resistance phenotypes and the production efficiency in microbial chassis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Homosserina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Engenharia Metabólica/métodos
19.
Int J Food Microbiol ; 389: 110102, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36736171

RESUMO

The biofilm clustered with putrefying microorganisms and seafood pathogens could cover the surface of aquatic products that pose a risk to cross-contaminating food products or even human health. Fighting biofilms triggers synchronous communication associated with microbial consortia to regulate their developmental processes, and the enhancement of the quorum sensing system in Lactiplantibacillus plantarum can serve as an updated starting point for antibiofilm-forming strategies. Our results showed that the exogenous 25 mM L-cysteine induced a significant strengthening in the AI-2/LuxS system of Lactiplantibacillus plantarum SS-128 along with a stronger bacteriostatic ability, resulting in an effective inhibition of biofilms formed by the simplified microbial consortia constructed by Vibrio parahaemolyticus and Shewanella putrefaciens grown on shrimp and squid surfaces. The accumulation of AI-2 allowed the suppression of the expression of biofilm-related genes in V. parahaemolyticus under the premise of L. plantarum SS-128 treatment, contributing to the inhibition effect. In addition, strengthening the AI-2/LuxS system is also conducive to eliminating preexisting biofilms by L. plantarum SS-128. This study suggests that the enhancement of the AI-2/LuxS system of lactic acid bacteria enables the regulation of interspecific communication within biofilms to be a viable tool to efficiently reduce and eradicate potentially harmful biofilms from aquatic product sources, opening new horizons for combating biofilms.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Biofilmes , Alimentos Marinhos , Lactonas/metabolismo , Homosserina/metabolismo
20.
J Biosci Bioeng ; 135(3): 217-223, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707399

RESUMO

l-Methionine biosynthesis is through multilevel regulated and multibranched biosynthetic pathway (MRMBP). Because of the complex regulatory mechanism and the imbalanced metabolic flux between branched pathways, microbial production of l-methionine has not been commercialized. In this study, local metabolic response in MRMBP of l-methionine was investigated and various crucial genes in branched pathways were determined. In l-serine pathway, the crucial gene was serABC. In O-succinyl homoserine (OSH) pathway, which was the C4 backbone of l-methionine, metB and metL controlled the metabolic flux jointly. In l-cysteine pathway, the crucial gene cysEfbr could disturb the flux distribution of local network in l-methionine biosynthesis. However, no crucial gene for l-methionine production in 5-methyl tetrahydrofolate (CH3-THF) pathway was found. The relation between these pathways was also researched. l-Serine pathway, as the upstream pathway of l-cysteine and CH3-THF, played a crucial role in l-methionine biosynthesis. l-Cysteine pathway showed the strongest controlling force of the metabolic flux, and OSH pathway was second to l-cysteine pathway. In contrast, CH3-THF pathway was the weakest, which was probably the mainly limited steps at present and had great potential in further research. In addition, constructed W3110 IJAHFEBC/pA∗HAmL was able to produce 2.62 g/L l-methionine in flask. This study is instructive for l-methionine biosynthesis and provides a new research method of biosynthesizing other metabolic products in MRMBPs.


Assuntos
Escherichia coli , Metionina , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina/metabolismo , Vias Biossintéticas/genética , Cisteína/genética , Cisteína/metabolismo , Engenharia Metabólica/métodos , Homosserina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA