RESUMO
The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer's disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.
Assuntos
Envelhecimento , Doença de Alzheimer , Metilação de DNA , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina , Hipotálamo , Ocitocina , Animais , Metilação de DNA/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Camundongos , Hormônio Liberador de Gonadotropina/metabolismo , Envelhecimento/genética , Envelhecimento/efeitos dos fármacos , Ocitocina/metabolismo , Ocitocina/farmacologia , Humanos , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Epigênese Genética/efeitos dos fármacosRESUMO
Puberty is the critical developmental transition to reproductive capability driven by the activation of gonadotropin-releasing hormone (GnRH) neurons. The complex neural mechanisms underlying pubertal activation of GnRH secretion still remain unknown, yet likely include kisspeptin neurons. However, kisspeptin neurons reside in several hypothalamic areas and the specific kisspeptin population timing pubertal onset remains undetermined. To investigate this, we strategically capitalized on the differential ontological expression of the Kiss1 gene in different hypothalamic nuclei to selectively ablate just arcuate kisspeptin neurons (aka KNDy neurons) during the early juvenile period, well before puberty, while sparing RP3V kisspeptin neurons. Both male and female transgenic mice with a majority of their KNDy neurons ablated (KNDyABL) by diphtheria toxin treatment in juvenile life demonstrated significantly delayed puberty onset and lower peripubertal LH secretion than controls. In adulthood, KNDyABL mice demonstrated normal in vivo LH pulse frequency with lower basal and peak LH levels, suggesting that only a small subset of KNDy neurons is sufficient for normal GnRH pulse timing but more KNDy cells are needed to secrete normal LH concentrations. Unlike prior KNDy ablation studies in rats, there was no alteration in the occurrence or magnitude of estradiol-induced LH surges in KNDyABL female mice, indicating that a complete KNDy neuronal population is not essential for normal LH surge generation. This study teases apart the contributions of different kisspeptin neural populations to the control of puberty onset, demonstrating that a majority of KNDy neurons in the arcuate nucleus are necessary for the proper timing of puberty in both sexes.
Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Hormônio Luteinizante , Camundongos Transgênicos , Neurônios , Maturidade Sexual , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Camundongos , Neurônios/metabolismo , Masculino , Hormônio Luteinizante/metabolismo , Maturidade Sexual/fisiologia , Hormônio Liberador de Gonadotropina/metabolismoRESUMO
Aluminum chloride (Al) is associated with Alzheimer's disease (AD) and reproductive disorders. But the relationship between gonadotropin-releasing hormone (GnRH) and c-Fos levels, the end product of MAP-kinase signaling, in AD is unknown, so we aimed to investigate this relationship. We exposed rats to Al dissolved in drinking water (10 and 50 mg/kg) for two and four weeks. The control group received only drinking water. At the end, the blood sample was collected under deep anesthesia and the brain was dissected on ice, and the testicular tissue was fixed in formalin. Amyloid beta (ßA) plaques in brain regions and the number of CA1 neurons were evaluated by Congo red staining and cresyl violet staining. Activation of neuronal nitric oxide synthase (nNOS) was studied using NADPH-diaphorase. The levels of c-Fos and testosterone receptors in the target area were examined immunohistochemically. Brain GnRH levels were determined by blotting, and serum levels of gonadotropins and steroids were measured by enzyme-linked immunosorbent assay (ELISA). All data were analyzed using analysis of variance (ANOVA) at α = 0.05 level. The accumulation of ßA plaque was observed along with a decrease in the number of CA1 pyramidal neurons and a significant decrease in the levels of c-Fos and GnRH in the brains of rats receiving Al, which was aligned with a significant decrease in serum levels of testosterone and LH. This study, for the first time, showed a link between dementia and a concomitant decrease in brain GnRH and c-Fos levels.
Assuntos
Cloreto de Alumínio , Doença de Alzheimer , Hormônio Liberador de Gonadotropina , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Cloreto de Alumínio/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Memória/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ratos Wistar , Aprendizagem/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologiaRESUMO
Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults, and people with TLE exhibit higher rates of reproductive endocrine dysfunction. Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate reproductive function in mammals by regulating gonadotropin secretion from the anterior pituitary. Previous research demonstrated GnRH neuron hyperexcitability in both sexes in the intrahippocampal kainic acid (IHKA) mouse model of TLE. Fast-inactivating A-type (I A) and delayed rectifier K-type (I K) K+ currents play critical roles in modulating neuronal excitability, including in GnRH neurons. Here, we tested the hypothesis that GnRH neuron hyperexcitability is associated with reduced I A and I K conductances. At 2â months after IHKA or control saline injection, when IHKA mice exhibit chronic epilepsy, we recorded GnRH neuron excitability, I A, and I K using whole-cell patch-clamp electrophysiology. GnRH neurons from both IHKA male and diestrus female GnRH-GFP mice exhibited hyperexcitability compared with controls. In IHKA males, although maximum I A current density was increased, I K recovery from inactivation was significantly slower, consistent with a hyperexcitability phenotype. In IHKA females, however, both I A and I K were unchanged. Sex differences were not observed in I A or I K properties in controls, but IHKA mice exhibited sex effects in I A properties. These results indicate that although the emergent phenotype of increased GnRH neuron excitability is similar in IHKA males and diestrus females, the underlying mechanisms are distinct. This study thus highlights sex-specific changes in voltage-gated K+ currents in GnRH neurons in a mouse model of TLE and suggesting potential sex differences in GnRH neuron ion channel properties.
Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Hormônio Liberador de Gonadotropina , Camundongos Transgênicos , Neurônios , Caracteres Sexuais , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Feminino , Masculino , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ácido Caínico/farmacologia , Técnicas de Patch-Clamp , Camundongos Endogâmicos C57BL , Camundongos , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismoRESUMO
Estrogens act through nuclear and membrane-initiated signaling. Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contribution of its nuclear and membrane signaling to the central regulation of reproduction is unclear. To address this question, two complementary approaches were used: estetrol (E4) a natural estrogen acting as an agonist of nuclear ERs, but as an antagonist of their membrane fraction, and the C451A-ERα mouse lacking mERα. E4 dose- dependently blocks ovulation in female rats, but the central mechanism underlying this effect is unknown. To determine whether E4 acts centrally to control ovulation, its effect was tested on the positive feedback of estradiol (E2) on neural circuits underlying luteinizing hormone (LH) secretion. In ovariectomized females chronically exposed to a low dose of E2, estradiol benzoate (EB) alone or combined with progesterone (P) induced an increase in the number of kisspeptin (Kp) and gonadotropin-releasing hormone (GnRH) neurons coexpressing Fos, a marker of neuronal activation. E4 blocked these effects of EB, but not when combined to P. These results indicate that E4 blocked the central induction of the positive feedback in the absence of P, suggesting an antagonistic effect of E4 on mERα in the brain as shown in peripheral tissues. In parallel, as opposed to wild-type females, C451A-ERα females did not show the activation of Kp and GnRH neurons in response to EB unless they are treated with P. Together these effects support a role for membrane-initiated estrogen signaling in the activation of the circuit mediating the LH surge.
Assuntos
Estradiol , Receptor alfa de Estrogênio , Estrogênios , Retroalimentação Fisiológica , Hormônio Liberador de Gonadotropina , Kisspeptinas , Neurônios , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/análogos & derivados , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Estrogênios/farmacologia , Ovariectomia , Hormônio Luteinizante/metabolismo , Camundongos , Progesterona/farmacologia , RatosRESUMO
Keratoconus (KC) is a corneal thinning dystrophy that leads to visual impairment. While the cause of KC remains poorly understood, changes in sex hormone levels have been correlated with KC development. This study investigated circulating gonadotropin-releasing hormone (GnRH) in control and KC subjects to determine if this master hormone regulator is linked to the KC pathology. Plasma and saliva were collected from KC subjects (n = 227 and n = 274, respectively) and non-KC controls (n = 58 and n = 101, respectively), in concert with patient demographics and clinical features. GnRH levels in both plasma and saliva were significantly lower in KC subjects compared to controls. This finding was retained in plasma when subjects were stratified based on age, sex, and KC severity. Control and KC corneal fibroblasts (HKCs) stimulated with recombinant GnRH protein in vitro revealed significantly increased luteinizing hormone receptor by HKCs and reduced expression of α-smooth muscle actin with treatment suggesting that GnRH may modulate hormonal and fibrotic responses in the KC corneal stroma. Further studies are needed to reveal the role of the hypothalamic-pituitary-gonadal axis in the onset and progression of KC and to explore this pathway as a novel therapeutic target.
Assuntos
Hormônio Liberador de Gonadotropina , Ceratocone , Humanos , Ceratocone/metabolismo , Ceratocone/patologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Adulto , Pessoa de Meia-Idade , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Córnea/patologia , Córnea/metabolismo , Estudos de Casos e Controles , Receptores LHRH/metabolismo , Receptores LHRH/genética , Adulto JovemRESUMO
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Assuntos
Amenorreia , Hormônio Liberador de Gonadotropina , Hipotálamo , Kisspeptinas , Humanos , Kisspeptinas/metabolismo , Amenorreia/metabolismo , Amenorreia/fisiopatologia , Amenorreia/terapia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Animais , Doenças Hipotalâmicas/metabolismo , Doenças Hipotalâmicas/fisiopatologia , Doenças Hipotalâmicas/terapia , Neurônios/metabolismo , Hipogonadismo/metabolismo , Hipogonadismo/fisiopatologia , Hipogonadismo/terapiaRESUMO
The objective of the study was to characterise the expression patterns of the two key components of cortisol action namely HSD11B1 (11-beta-hydroxysteroid dehydrogenase type 1) and NR3C1 (nuclear receptor subfamily 3, group C, member 1, also known as the glucocorticoid receptor) in superovulation induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. Bovine ovaries containing preovulatory follicles or CL were timely defined during induced ovulation as follows: 0 h before GnRH (Gonadotropin-releasing hormone) application, and 4, 10, 20, 25 (follicles) and 60 h (early CL) after GnRH. The low mRNA expression of HSD11B1 and NR3C1 in the follicle group before the GnRH application increased significantly in the follicle group 20 h after GnRH and remained high afterward also in the early CL group. In contrast, the high NR3C1 mRNA decreased in follicles 25 h after GnRH (close to ovulation) and significantly increased again after ovulation (early CL). Our results indicated the involvement of HSD11B1 and NR3C1 as the two key components of cortisol action in the local mechanisms coordinating final follicle maturation, ovulation, follicular-luteal transition and CL development in the cow.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corpo Lúteo , Hormônio Liberador de Gonadotropina , Folículo Ovariano , Receptores de Glucocorticoides , Animais , Feminino , Bovinos/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Hormônio Liberador de Gonadotropina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Indução da Ovulação/veterinária , Ovulação/fisiologia , Regulação da Expressão GênicaRESUMO
This study hypothesized that SCFA, acetate impacts positively on hypothalamic pyroptosis and its related abnormalities in experimentally induced PCOS rat model, possibly through NrF2/HIF1-α modulation. Eight-week-old female Wister rats were divided into groups (n = 5), namely control, PCOS, acetate and PCOS + acetate groups. Induction of PCOS was performed by administering 1 mg/kg body weight of letrozole for 21 days. After PCOS confirmation, the animals were treated with 200 mg/kg of acetate for 6 weeks. Rats with PCOS were characterized with insulin resistance, leptin resistance, increased plasma testosterone as well as degenerated ovarian follicles. There was also a significant increase in hypothalamic triglyceride level, triglyceride-glucose index, inflammatory biomarkers (SDF-1 and NF-kB) and caspase-6 as well as plasma LH and triglyceride. A decrease was observed in plasma adiponectin, GnRH, FSH, and hypothalamic GABA with severe inflammasome expression in PCOS rats. These were accompanied by decreased level of NrF2/HIF1-α, and the alterations were reversed when treated with acetate. Collectively, the present results suggest the therapeutic impact of acetate on hypothalamic pyroptosis and its related comorbidity in PCOS, a beneficial effect that is accompanied by modulation of NrF2/HIF1-α.
Assuntos
Hipotálamo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Síndrome do Ovário Policístico , Piroptose , Ratos Wistar , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/patologia , Feminino , Animais , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Piroptose/efeitos dos fármacos , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Letrozol/farmacologia , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Adiponectina/metabolismo , Adiponectina/sangue , Testosterona/sangue , Leptina/sangue , Leptina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Context Understanding of central nervous system mechanisms related to age-related infertility remains limited. Fibril α-synuclein, distinct from its monomer form, is implicated in age-related diseases and propagates among neurons akin to prions. Aims We compared α-synuclein expression in gonadotropin-releasing hormone-expressing neurons (GnRH neurons) in the pre-optic area, arcuate nucleus, and median eminence of healthy heifers and aged cows to determine its role in age-related infertility. Methods We analysed mRNA and protein expression, along with fluorescent immunohistochemistry for GnRH and α-synuclein, followed by Congo red staining to detect amyloid deposits, and confocal microscopy. Key results Both mRNA and protein expressions of α-synuclein were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and western blots in bovine cortex, hippocampus, and anterior and posterior hypothalamus tissues. Significant differences in α-synuclein mRNA expression were observed in the cortex and hippocampus between young and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomer, dimer, and oligomers, in the cortex, hippocampus, hypothalamus tissues, and there were significant differences in some bands between young and old cows. Bright-field and polarised light microscopy did not detect obvious amyloid deposition in aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signal of Congo red and α-synuclein in GnRH neurons in aged hypothalami. Additionally, α-synuclein expression was detected in immortalised GnRH neurons, GT1-7 cells. Conclusion Alpha-synuclein was expressed in GnRH neurons, and some differences were observed between young and old hypothalami. Implications Alpha-synuclein may play an important role in aging-related infertility.
Assuntos
Envelhecimento , Hormônio Liberador de Gonadotropina , Hipotálamo , Neurônios , alfa-Sinucleína , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Bovinos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Neurônios/metabolismo , Hipotálamo/metabolismo , Feminino , Envelhecimento/metabolismo , RNA Mensageiro/metabolismoRESUMO
Reproductive function in mammals depends on the ability of progesterone (P4) to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic-negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for P4-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing kisspeptin, neurokinin B, and dynorphin (KNDy cells), mediate P4-negative feedback. To achieve this, we used female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons coexpressing PGR messenger RNA (mRNA) (11% in KPRKO mice vs 86% in wild-type [WT] mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous P4 to blunt a postcastration increase in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to WT controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not affect negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.
Assuntos
Núcleo Arqueado do Hipotálamo , Retroalimentação Fisiológica , Hormônio Liberador de Gonadotropina , Kisspeptinas , Hormônio Luteinizante , Camundongos Knockout , Progesterona , Receptores de Progesterona , Animais , Feminino , Kisspeptinas/metabolismo , Kisspeptinas/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Hormônio Luteinizante/metabolismo , Camundongos , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Núcleo Arqueado do Hipotálamo/metabolismo , Progesterona/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Neurônios/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismoRESUMO
We studied the effect of a high-fat, high-carbohydrate diet (HFHCD) on basal testosterone levels in the blood and testosterone, its precursors, and expression of steroidogenic genes in the testes of rats treated with human chorionic gonadotropin (hCG, 10 IU/rat, subcutaneously, once), gonadotropin-releasing hormone receptor antagonist cetrorelix (75 µg/kg, subcutaneously, 3 days), and their combination. In HFHCD rats, no obvious signs of androgen deficiency were observed and the response of the testes to hCG stimulation was preserved. Unlike control rats (normal diet), the expression of the luteinizing hormone receptor gene in these rats did not change in response to hCG stimulation and cetrorelix administration; they also showed a paradoxical, more pronounced response to hCG administration under conditions of suppression of the gonadotropin secretion by cetrorelix. This suggests that the etiology and pathogenesis of obesity may have different effects on the hormonal status of the male reproductive system.
Assuntos
Gonadotropina Coriônica , Hormônio Liberador de Gonadotropina , Obesidade , Testículo , Testosterona , Masculino , Animais , Gonadotropina Coriônica/farmacologia , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Ratos , Testosterona/sangue , Testículo/efeitos dos fármacos , Testículo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Receptores LHRH/metabolismo , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/genética , Dieta Hiperlipídica/efeitos adversos , Antagonistas de Hormônios/farmacologia , Humanos , Ratos WistarRESUMO
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Assuntos
Cabras , Hipotálamo , Maturidade Sexual , Transcriptoma , Animais , Cabras/genética , Cabras/crescimento & desenvolvimento , Hipotálamo/metabolismo , Maturidade Sexual/genética , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Perfilação da Expressão Gênica , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismoRESUMO
Luteinizing hormone (LH), a heterodimeric glycoprotein produced by pituitary gonadotrope cells, regulates gonadal function. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates LH synthesis and secretion. GnRH induces LHß subunit (Lhb) expression via the transcription factor, early growth response 1 (EGR1), acting on the Lhb promoter. In contrast, overexpression of zinc finger E-box binding homeobox 1 (ZEB1) represses LH production in mice, but the underlying mechanism was not previously elucidated. Here, we observed that ZEB1 inhibited GnRH-stimulated but not basal Lhb mRNA expression in homologous murine LßT2 cells. Moreover, ZEB1 blocked GnRH and/or EGR1 induction of murine Lhb but not human LHB promoter-reporter activity in these cells. Using chimeric reporters, we mapped the species-specific ZEB1 sensitivity to sequence differences, including in Z- and E-boxes, in the proximal Lhb/LHB promoters, immediately upstream of the transcription start sites. ZEB1 bound to the murine Lhb promoter with higher affinity than to the human LHB promoter in this region. To examine ZEB1's physiological role in LH synthesis, we characterized gonadotrope-specific Zeb1 knockout mice. Loss of ZEB1 in gonadotropes did not affect LH production or secretion. Collectively, the data suggest that ZEB1, when overexpressed, can inhibit GnRH/EGR1 induction of murine Lhb transcription but does not play a necessary role in LH synthesis in mice.
Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante Subunidade beta , Hormônio Luteinizante , Regiões Promotoras Genéticas , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Camundongos , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Hormônio Luteinizante/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Transcrição Gênica , Camundongos Knockout , Linhagem Celular , Regulação da Expressão Gênica , MasculinoRESUMO
There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.
Assuntos
Receptores de Kisspeptina-1 , Receptores LHRH , Humanos , Feminino , Animais , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Receptores LHRH/metabolismo , Receptores LHRH/genética , Camundongos , Células HEK293 , Peixe-Zebra , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Kisspeptinas/metabolismo , Kisspeptinas/genética , Poluentes Ambientais/toxicidade , Poluentes Ambientais/farmacologiaRESUMO
BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT: Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION: This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.
Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Maturidade Sexual/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Poliaminas/metabolismo , Envelhecimento , Ovário/efeitos dos fármacos , Ovário/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacosRESUMO
STUDY QUESTION: Does medroxyprogesterone acetate (MPA) exposure in progestin-primed ovarian stimulation (PPOS) cycles cause molecular perturbations in the steroidogenic function and gonadotropin responsiveness of the granulosa cells? SUMMARY ANSWER: PPOS cycles are identical to traditional GnRH antagonist cycles not only for clinical IVF characteristics but also for gonadotropin receptor expression, response to gonadotropins, and steroidogenic function at the molecular level. WHAT IS KNOWN ALREADY: PPOS is increasingly used as an alternative to GnRH antagonists due to the inhibitory effect of progesterone on LH release by reducing GnRH pulsatility at the hypothalamic level. Although a growing body of evidence from clinical studies did not indicate significant differences between PPOS and antagonist protocols for IVF cycle characteristics and obstetrical outcomes, it is still unknown whether exposure of the antral follicle cohort to progesterone or its synthetic derivatives during ovarian stimulation causes any subtle molecular aberrations in terms of steroidogenesis and gonadotropin responsiveness. To address this issue, detailed comparative molecular analyses were conducted in the luteinized mural granulosa cells (GCs) obtained from normal responding IVF patients undergoing PPOS and antagonist cycles. STUDY DESIGN, SIZE, DURATION: A clinical translational research study was conducted with IVF patients. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included 55 normal responding IVF patients who underwent ovarian stimulation with either PPOS using MPA (5 mg twice daily) or GnRH antagonist cetrorelix acetate. Recombinant forms of FSH and hCG were used for ovarian stimulation and ovulation triggering, respectively. Luteinized mural GCs obtained during the oocyte retrieval procedure were used for the experiments. Cell culture, quantitative real-time PCR, immunoblotting, confocal time-lapse live cell imaging, and hormone assays were used. MAIN RESULTS AND THE ROLE OF CHANCE: Demographic and IVF cycle characteristics of the patients undergoing ovarian stimulation with PPOS and GnRH antagonist were similar, including ovarian response, mature oocyte yield, and fertilization rates. Molecular analyses revealed that the expression of the enzymes involved in sex-steroid synthesis (StAR, SCC, 3ß-HSD, 17ß-HSD, aromatase) and the uptake/storage/utilization of cholesterol (LDL receptor, Hormone-sensitive lipase, hydroxy-methyl glutaryl Co-enzyme-A reductase, and Sterol O-acyltransferase1) in the GCs of the PPOS cycles were comparable to those of the antagonist cycles. The expression of the receptors for gonadotropins, estrogen, and progesterone hormones was also similar. Basal and hCG-induced increases in 3ß-HSD expression and progesterone production and basal and FSH-induced increases in aromatase expression and E2 output of the GCs from PPOS patients did not exhibit any meaningful differences when compared with GCs from antagonist cycles. Furthermore, basal and hCG-induced up-regulation in the LDL receptor expression and cholesterol uptake did not differ between the groups. Confocal imaging also revealed similar patterns of expression for the steroidogenic enzymes and their co-localization with mitochondria. Lastly, the expression of the other important genes regulating cumulus expansion, ovulation, and luteal function [Relaxin, ADAMTS-1, and epidermal growth factor (EGF)-like growth factor amphiregulin] in the GCs of the PPOS and antagonist cycles were similar. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Caution should be exercised when interpreting our data which was derived from normally responding patients whose ovulation was triggered with hCG. It is unclear whether the molecular parameters assessed vary according to infertility etiologies, magnitude of ovarian response, mode of trigger, and any other underlying ovarian pathologies or systemic diseases. MPA was the progestin used for PPOS and whether these findings can be generalized to other progestins is unknown. WIDER IMPLICATIONS OF THE FINDINGS: This study provides reassuring molecular evidence that exposure of antral follicle cohorts to MPA during the follicular growth phase does not have any detrimental effects on steroidogenic, ovulatory, and luteal functions when compared with GnRH antagonist cycles. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the School of Medicine, the Graduate School of Health Sciences of Koc University and Koç University Research Center for Translational Medicine (KUTTAM), and equally funded by the Republic of Turkey Ministry of Development Research Infrastructure Support Program. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Células da Granulosa , Acetato de Medroxiprogesterona , Folículo Ovariano , Indução da Ovulação , Feminino , Humanos , Acetato de Medroxiprogesterona/farmacologia , Indução da Ovulação/métodos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Adulto , Fertilização in vitro/métodos , Progestinas/farmacologia , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismoRESUMO
Temperature is a preeminent factor in the regulation of fish reproduction and hinders gonadal development beyond a specific threshold. To comprehend the molecular mechanism responsible for reproductive suppression at different temperature, expression of the genes encoding kisspeptin (kiss2), gonadotropin-releasing hormone (gnrh1) and their receptors (gpr54, gnrh1r) in the brain, and the gonadotropin (GTH) subunits (fshb and lhb) in the pituitary were studied in juvenile Nile tilapia (Oreochromis niloticus) along with gonadal histology. Fish were acclimatized to three distinct temperatures, including 31 °C, 34 °C and 37 °C for 14 days. The mRNA levels of kiss2, gpr54, gnrh1, and gnrh1r were significantly decreased at 37 °C compared to 31 °C and 34 °C in the both sexes. In parallel, the expression level of fshb in the both sexes and lhb in the female were significantly lower at 37 °C in the pituitary. Histologically, the gonads of both sexes had normal growth of gametes at control temperature (31 °C), whereas the spermatogenesis and oocyte maturation were slowed down and atretic oocytes were found in the ovary at 37 °C acclimation temperature. Taken together, the results imply that elevated temperature beyond the specific threshold may have a negative impact on reproduction by suppressing the gene expressions of kisspeptin/GnRH1/GTH system and eventually restrains normal growth and maturation of gametes in the both sexes of Nile tilapia.
Assuntos
Ciclídeos , Hormônio Liberador de Gonadotropina , Gônadas , Kisspeptinas , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Feminino , Masculino , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Temperatura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hipófise/metabolismo , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Gonadotropinas/metabolismo , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.