Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.747
Filtrar
1.
Anim Biotechnol ; 35(1): 2346808, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38739483

RESUMO

This study aimed to evaluate the effect of miR-23b-3p on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. The mRNA and protein levels of GH and miR-23b-3p target genes were measured by real time fluorescence quantitative PCR (qPCR) and Western blot, respectively. The target relationship of miR-23b-3p was validated by double luciferase reporter gene system. The results showed that GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-23b-3p-mi group than in the NC group (P<0.01), while GH mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.05). The result of bioinformatics analysis and double luciferase reporter gene system validation proved that miR-23b-3p targeted 3'UTR of pituitary specific transcription factor 1 (POU1F1). POU1F1 mRNA and protein levels were lower miR-23b-3p-mi group than in the NC group (P<0.01), while POU1F1 mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.01). These results demonstrated that miR-23b-3p could regulate GH expression in pituitary cells by regulating POU1F1 gene.


Assuntos
Hormônio do Crescimento , MicroRNAs , Fator de Transcrição Pit-1 , Animais , Bovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo , Hipófise/metabolismo , Regulação da Expressão Gênica , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Expert Rev Endocrinol Metab ; 19(3): 207-215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712738

RESUMO

INTRODUCTION: Intracranial aneurysms (IAs) occur in 3-5% of the general population and are characterized by localized structural deterioration of the arterial wall with loss of internal elastic lamina and disruption of the media. The risk of incidence and rupture of aneurysms depends on age, sex, ethnicity, and other different factors, indicating the influence of genetic and environmental factors. When an aneurysm ruptures, there is an estimated 20% mortality rate, along with an added 30-40% morbidity in survivors. The alterations in hormonal levels can influence IAs, while the rupture of an aneurysm can have various impacts on endocrine pathways and affect their outcome. AREA COVERED: This review explores the reciprocal relationship between endocrinological changes (estrogen, growth hormone, and thyroid hormones) and IAs, as well as the effects of aneurysm ruptures on endocrine fluctuations. EXPERT OPINION: Based on the data presented in this paper, we recommend further exploration into the influence of hormones on aneurysm formation and rupture. Additionally, we propose conducting endocrine assessments for patients who have experienced a rupture of IAs. Monitoring hormonal changes in patients with IAs could serve as a potential risk factor for rupture, leading to interventions in the approach to managing IAs.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Roto , Fatores de Risco , Hormônios Tireóideos/metabolismo , Estrogênios , Hormônio do Crescimento/metabolismo , Hormônios/metabolismo
3.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596226

RESUMO

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Assuntos
Carcinoma de Células Renais , Carpas , Hormônio do Crescimento Humano , Neoplasias Renais , Animais , Carpas/genética , Carpas/metabolismo , Triploidia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Vigor Híbrido/genética , Peptídeos Semelhantes à Insulina , Hormônio do Crescimento Humano/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Perfilação da Expressão Gênica
4.
Front Endocrinol (Lausanne) ; 15: 1295677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572473

RESUMO

The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.


Assuntos
Insulina , Fígado , Gravidez , Feminino , Humanos , Fígado/metabolismo , Insulina/metabolismo , Hormônio do Crescimento/metabolismo , Glucagon/metabolismo , Nutrientes
5.
Biochem Biophys Res Commun ; 709: 149811, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38569244

RESUMO

Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.


Assuntos
Aminoácidos , Hormônio do Crescimento , Animais , Camundongos , Aminoácidos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transtornos do Crescimento , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética
6.
Peptides ; 176: 171213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604379

RESUMO

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Assuntos
Hormônio Adrenocorticotrópico , Glucagon , Glicopeptídeos , Humanos , Glicopeptídeos/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Masculino , Adulto , Feminino , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Hidrocortisona/sangue , Receptores de Glucagon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/sangue , Pessoa de Meia-Idade
7.
Front Endocrinol (Lausanne) ; 15: 1369043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628583

RESUMO

The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter. This approach was anticipated to induce more localized and lower exogenous GH secretion. In this study, we characterized the growth and reproduction of these transgenic LHp-GH zebrafish using hormonal and physiological parameters. Our findings reveal that LHp-GH fish exhibited accelerated growth in both length and weight, along with a lower feed conversion ratio, indicating more efficient feed utilization, all while maintaining unchanged body proportions. These fish demonstrated higher expression levels of LH and GH in the pituitary and elevated IGF-1 levels in the liver compared to wild-type fish. An examination of reproductive function in LHp-GH fish unveiled lower pituitary LH and FSH contents, smaller follicle diameter in female gonads, and reduced relative fecundity. However, in transgenic males, neither the distribution of spermatogenesis stages nor sperm concentrations differed significantly between the fish lines. These results suggest that coupling exogenous GH expression with endogenous LH expression in females directs resource investment toward somatic growth at the expense of reproductive processes. Consequently, we conclude that incorporating GH under the LH promoter represents a suitable construct for the genetic engineering of commercial fish species, providing accelerated growth while preserving body proportions.


Assuntos
Hormônio do Crescimento , Peixe-Zebra , Animais , Feminino , Masculino , Animais Geneticamente Modificados/metabolismo , Técnicas de Transferência de Genes , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio Luteinizante/genética , Sêmen/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Front Endocrinol (Lausanne) ; 15: 1345363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481440

RESUMO

X-linked acrogigantism (X-LAG) is a rare form of pituitary gigantism that is associated with growth hormone (GH) and prolactin-secreting pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) that develop in infancy. It is caused by a duplication on chromosome Xq26.3 that leads to the misexpression of the gene GPR101, a constitutively active stimulator of pituitary GH and prolactin secretion. GPR101 normally exists within its own topologically associating domain (TAD) and is insulated from surrounding regulatory elements. X-LAG is a TADopathy in which the duplication disrupts a conserved TAD border, leading to a neo-TAD in which ectopic enhancers drive GPR101 over-expression, thus causing gigantism. Here we trace the full diagnostic and therapeutic pathway of a female patient with X-LAG from 4C-seq studies demonstrating the neo-TAD through medical and surgical interventions and detailed tumor histopathology. The complex nature of treating young children with X-LAG is illustrated, including the achievement of hormonal control using a combination of neurosurgery and adult doses of first-generation somatostatin analogs.


Assuntos
Acromegalia , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Adulto , Humanos , Criança , Feminino , Pré-Escolar , Gigantismo/genética , Gigantismo/terapia , Gigantismo/metabolismo , Acromegalia/patologia , Hormônio do Crescimento/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia
9.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38500360

RESUMO

Acromegaly and gigantism are disorders caused by hypersecretion of growth hormone (GH), usually from pituitary adenomas. Although somatostatin analogues (SSA), dopamine agonists, and GH receptor antagonists are important therapeutic agents, all of these have issues with their effectiveness, safety, and/or convenience of use. To overcome these, we developed a GH-specific potent neutralizing a mouse monoclonal antibody (mAb) named 13H02. 13H02 selectively bound both to human and monkey GH with high affinity, and strongly inhibited the biological activity of GH in the Nb2 rat lymphoma cell proliferation assay. In hypophysectomized/GH-supplemented rats, a single subcutaneous administration of 13H02 significantly and dose-dependently lowered the serum insulin-like growth factor-1 levels. To pursue the therapeutic potential of this antibody for acromegaly and gigantism, we humanized 13H02 to reduce its immunogenicity and applied a single amino acid mutation in the Fc region to extend its serum half-life. The resulting antibody, Hu-13H02m, also showed GH-specific neutralizing activity, similar to the parental 13H02, and showed improved binding affinity to human FcRn.


Assuntos
Acromegalia , Gigantismo , Hormônio do Crescimento Humano , Camundongos , Humanos , Feminino , Animais , Ratos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Acromegalia/tratamento farmacológico , Gigantismo/complicações , Gigantismo/tratamento farmacológico , Peptídeos Semelhantes à Insulina , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
10.
Toxicol Lett ; 395: 17-25, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552810

RESUMO

Since chlormequat chloride is widely applied as a plant growth regulator in agriculture and horticulture, its exposure through food consumption is common. We demonstrated previously that chlormequat chloride exposure during pregnancy led to embryos with bigger sizes associated with higher levels of growth hormone (GH) on gestation day 11 (GD11). However, the dose-effect relationship of chlormequat chloride at a lower dose range was not established, and the underlying mechanisms of its promoting effects on embryonic growth and development were not fully elucidated. To address these, pregnant rats were orally exposed to chlormequat chloride at 0, 0.05, 0.5 and 5 mg/kg.bw from GD0 to 11 and the embryonic growth and growth related hormones were evaluated on GD11. We found that the growth and development of the embryos was significantly promoted in a dose dependent manner by chlormequat chloride. Chlormequat chloride also increased embryonic GH, GH releasing hormone (GHRH), and somatostatin (SRIF), and inhibited the embryonic cAMP dependent protein kinase A (PKA) signaling pathway. Chlormequat chloride increased GH synthesis modulated by GHRH/SRIF-PKA-Pituitary specific transcription factor 1 (Pit-1) in the maternal rats. Intriguingly, chlormequat chloride did not show any effects on GH and PKA signaling pathways in the non-pregnant female rats. These findings together suggest that the disrupting effect of chlormequat chloride on GH is associated with pregnancy.


Assuntos
Clormequat , Hormônio do Crescimento , Gravidez , Feminino , Ratos , Animais , Hormônio do Crescimento/metabolismo , Clormequat/toxicidade , Reguladores de Crescimento de Plantas/toxicidade , Fatores de Transcrição , Transdução de Sinais
11.
Sci Rep ; 14(1): 3362, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336825

RESUMO

We developed a fatty liver mouse model using human hepatocyte chimeric mice. As transplanted human hepatocytes do not respond to mouse growth hormone (GH) and tend to accumulate fat, we hypothesized that addition of human GH would alter lipid metabolism and reduce accumulation of fat in the liver even when fed a high-fat diet. Six uPA/SCID chimeric mice were fed a high-fat GAN diet to induce fatty liver while six were fed a normal CRF1 diet, and GH was administered to three mice in each group. The mice were euthanized at 8 weeks, and human hepatocytes were extracted for RNA-Seq, DIA proteomics, and metabolomics analysis. Abdominal echocardiography revealed that the degree of fatty liver increased significantly in mice fed GAN diet (p < 0.001) and decreased significantly in mice treated with GH (p = 0.026). Weighted gene correlation network analysis identified IGF1 and SEMA7A as eigengenes. Administration of GH significantly reduced triglyceride levels and was strongly associated with metabolism of amino acids. MiBiOmics analysis identified perilipin-2 as a co-inertia driver. Results from multi-omics analysis revealed distinct gene expression and protein/metabolite profiles in each treatment group when mice were fed a high-fat or normal diet with or without administration of GH.


Assuntos
Hormônio do Crescimento Humano , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Multiômica , Camundongos SCID , Hepatócitos/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
12.
Eur J Endocrinol ; 190(2): 173-181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330165

RESUMO

IMPORTANCE: A paradoxical increase of growth hormone (GH) following oral glucose load has been described in ∼30% of patients with acromegaly and has been related to the ectopic expression of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in somatotropinomas. Recently, we identified germline pathogenic variants and somatic loss of heterozygosity of lysine demethylase 1A (KDM1A) in patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. The ectopic expression of GIPR in both adrenal and pituitary lesions suggests a common molecular mechanism. OBJECTIVE: We aimed to analyze KDM1A gene sequence and KDM1A and GIPR expressions in somatotroph pituitary adenomas. SETTINGS: We conducted a cohort study at university hospitals in France and in Italy. We collected pituitary adenoma specimens from acromegalic patients who had undergone pituitary surgery. We performed targeted exome sequencing (gene panel analysis) and array-comparative genomic hybridization on somatic DNA derived from adenomas and performed droplet digital PCR on adenoma samples to quantify KDM1A and GIPR expressions. RESULTS: One hundred and forty-six patients with sporadic acromegaly were studied; 72.6% presented unsuppressed classical GH response, whereas 27.4% displayed a paradoxical rise in GH after oral glucose load. We did not identify any pathogenic variant in the KDM1A gene in the adenomas of these patients. However, we identified a recurrent 1p deletion encompassing the KDM1A locus in 29 adenomas and observed a higher prevalence of paradoxical GH rise (P = .0166), lower KDM1A expression (4.47 ± 2.49 vs 8.56 ± 5.62, P < .0001), and higher GIPR expression (1.09 ± 0.92 vs 0.43 ± 0.51, P = .0012) in adenomas from patients with KDM1A haploinsufficiency compared with those with 2 KDM1A copies. CONCLUSIONS AND RELEVANCE: Unlike in GIP-dependent primary bilateral macronodular adrenal hyperplasia, KDM1A genetic variations are not the cause of GIPR expression in somatotroph pituitary adenomas. Recurrent KDM1A haploinsufficiency, more frequently observed in GIPR-expressing adenomas, could be responsible for decreased KDM1A function resulting in transcriptional derepression on the GIPR locus.


Assuntos
Acromegalia , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Somatotrofos , Humanos , Neoplasias Hipofisárias/patologia , Acromegalia/metabolismo , Somatotrofos/metabolismo , Somatotrofos/patologia , Hibridização Genômica Comparativa , Hiperplasia/patologia , Estudos de Coortes , Genótipo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma/patologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Glucose , Histona Desmetilases/genética , Histona Desmetilases/metabolismo
13.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369248

RESUMO

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Assuntos
Quimiocina CCL19 , Hormônio do Crescimento , Prolactina , Sono , Humanos , Movimento Celular , Quimiocina CCL19/metabolismo , Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Sono/fisiologia
14.
Physiol Plant ; 176(1): e14195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332400

RESUMO

This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.


Assuntos
Brassinosteroides , Pinellia , Brassinosteroides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pinellia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico , Citocininas/metabolismo , Plantas/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia
15.
J Feline Med Surg ; 26(2): 1098612X241226690, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38323402

RESUMO

PRACTICAL RELEVANCE: Diabetes mellitus is the second-most common feline endocrinopathy, affecting an estimated 1/200 cats. While the underlying causes vary, around 15-25% of cats with diabetes mellitus develop the condition secondarily to progressive growth hormone (GH)-induced insulin resistance. This typically results in a form of diabetes that is challenging to manage, whereby the response to insulin is very variable or high doses are required to achieve even minimal diabetic control. CLINICAL CHALLENGES: Although uncontrolled chronic excessive GH may result in phenotypic changes that raise suspicion for acromegaly, many cats with hypersomatotropism (HST) do not have these changes. In these situations, a clinician's index of suspicion may be increased by the presence of less dramatic changes such as marked polyphagia, stertor or uncontrolled diabetes mellitus. The current diagnostic test of choice is demonstration of a markedly increased serum insulin-like growth factor 1 (IGF1) concentration, but some affected cats will have only a marginal increase; additionally, chronic insulin administration in cats results in an increase in serum IGF1, making the diagnosis less clear cut and requiring additional confirmatory tests. EVIDENCE BASE: Over the past two decades, HST has increasingly been recognised as an underlying cause of diabetes mellitus in cats. This review, which focuses on diagnosis and treatment, utilises data from observational studies, clinical trials and case series, as well as drawing on the experience of the authors in managing this condition.


Assuntos
Acromegalia , Doenças do Gato , Diabetes Mellitus , Gatos , Animais , Acromegalia/veterinária , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/uso terapêutico , Diabetes Mellitus/veterinária , Insulina/uso terapêutico
16.
Sci Rep ; 14(1): 1273, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218897

RESUMO

The ongoing challenges of climate change and pollution are major factors disturbing ecosystems, including aquatic systems. They also have an impact on gene regulation and biochemical changes in aquatic animals, including fish. Understanding the mechanisms of gene regulation and biochemical changes due to climate change and pollution in aquatic animals is a challenging task. However, with this backdrop, the present investigation was conducted to explore the effects of arsenic (As) and ammonia (NH3) toxicity and high-temperature (T) stress on gene regulation and biochemical profiles, mitigated by dietary manganese (Mn) in Pangasianodon hypophthalmus. The fish were exposed to different combinations of As, NH3, and T, and fed with dietary Mn at 4, 8, and 12 mg kg-1 to evaluate the gene expression of immunity, antioxidative status, cytokine, and NfKB signaling pathway genes. HSP 70, cytochrome P450 (CYP 450), metallothionein (MT), DNA damage-inducible protein (DDIP), caspase (CAS), tumor necrosis factor (TNFα), toll-like receptor (TLR), interleukin (IL), inducible nitric oxide synthase (iNOS), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were noticeably highly upregulated by As + NH3 + T stress, whereas Mn diet at 8 mg kg-1 downregulated these genes. Further, total immunoglobulin (Ig), myostatin (MYST), somatostatin (SMT), growth hormone (GH), growth hormone regulator 1 and ß, insulin-like growth factors (IGF1X1 and IGF1X2) were significantly upregulated by Mn diets. The biochemical profiles were highly affected by stressors (As + NH3 + T). The bioaccumulation of arsenic in different tissues was also notably reduced by Mn diets. Furthermore, the infectivity of the fish was reduced, and survival against pathogenic bacteria was enhanced by Mn diet at 8 mg kg-1. The results of the present investigation revealed that dietary Mn at 8 mg kg-1 controls gene regulation against multiple stressors (As, NH3, As + NH3, NH3 + T, As + NH3 + T) in fish.


Assuntos
Arsênio , Manganês , Animais , Manganês/toxicidade , Arsênio/toxicidade , Amônia/toxicidade , Temperatura , Ecossistema , Antioxidantes/metabolismo , Dieta , NF-kappa B/metabolismo , Nutrientes , Hormônio do Crescimento/metabolismo , Estresse Oxidativo , Ração Animal/análise
17.
Int J Biol Sci ; 20(2): 801-817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169563

RESUMO

Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteína delta-2 de Junções Comunicantes , Adenoma/tratamento farmacológico , Estresse do Retículo Endoplasmático
18.
Growth Horm IGF Res ; 74: 101572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281404

RESUMO

OBJECTIVE: GATA2 is a key transcription factor involved in the differentiation and determination of thyrotrophs and gonadotrophs in pituitary and hematopoietic development. However, studies on the upstream ligands of the GATA2 signal transduction pathway have been limited. To identify upstream ligands, we examined growth hormone (GH) as a plausible stimulator. DESIGN: We evaluated GH-induced GATA2 expression in murine TtT/GF thyrotrophic pituitary tumor cells and its direct impact on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS: GATA2 expression increased with activated STAT5B in a dose-dependent manner and was inhibited by a STAT5 specific inhibitor. Moreover, we found functional STAT5B binding site consensus sequences at -359 bp in the GATA2 promoter region. CONCLUSION: These findings suggest that GH directly stimulates GATA2 via the GHR/JAK/STAT pathway and participates in various developmental phenomena mediated by GATA2.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Camundongos , Animais , Hormônio do Crescimento/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Hormônio do Crescimento Humano/metabolismo , Proteínas do Leite
19.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241182

RESUMO

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.


Assuntos
Nanismo , Hormônio do Crescimento , Animais , Feminino , Humanos , Masculino , Camundongos , Nanismo/genética , Estudo de Associação Genômica Ampla , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Knockout , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Proteínas de Membrana/genética
20.
Environ Pollut ; 341: 122947, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977359

RESUMO

In response to the restriction of phthalate plasticizers, acetyl tributyl citrate (ATBC) and acetyl triethyl citrate (ATEC) have been used in medical devices and food packaging. In the present study, the effects of ATBC and ATEC on the development, behavior, growth hormone (GH)-related endocrine system, neurotransmitters, and oxidative stress of zebrafish embryo or larvae were investigated. After exposure of zebrafish to ATBC and ATEC (0, 0.03, 0.3, 3, 30, and 300 µg/L) for 96 h, developmental toxicity, behavioral changes under light/dark condition, changes in hormones and genes involved in GH/insulin-like growth factors (IGFs) axis, changes in hormone, enzyme, and genes related to neurodevelopment, antioxidant enzymes activities were determined. Larvae exposed to 30 or 300 µg/L ATBC showed significant reductions in body length and moving distance and speed, whereas no significant effects on development and locomotor behavior were observed in larvae exposed to ATEC. The contents of GH and IGF-I were significantly reduced in larvae exposed to 3, 30, and 300 µg/L ATBC. Hormonal changes in fish exposed to ATBC are well supported by regulation of genes related to GH (gh1) and the activity of IGF-I (igf1). In fish exposed to ATBC, reduced acetylcholinesterase activity and down-regulation of genes related to the central nervous system development (ache, gap43, mbpa, and syn21) were observed. ATBC increased the production of reactive oxygen species and the levels of superoxide dismutase, catalase, and glutathione peroxidase. Notably, pre-treatment with the classic antioxidant N-acetylcysteine alleviated ATBC-induced GH-related endocrine disruption and neurotoxicity. Our observations showed that exposure to low levels of ATBC could disturb the regulatory systems of GH/IGFs axis and neurobehavior, ultimately leading to developmental inhibition and hypoactivity, and that increased oxidative stress plays a major role in these toxicities.


Assuntos
Plastificantes , Poluentes Químicos da Água , Animais , Plastificantes/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Peixe-Zebra/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Larva/metabolismo , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Sistema Endócrino , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA