Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.940
Filtrar
1.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715048

RESUMO

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Assuntos
Tecido Adiposo , Metilação de DNA , Diabetes Gestacional , Epigênese Genética , Músculo Esquelético , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Diabetes Gestacional/genética , Epigênese Genética/genética , Adulto , Metilação de DNA/genética , Músculo Esquelético/metabolismo , Adolescente , Tecido Adiposo/metabolismo , Masculino , Efeitos Tardios da Exposição Pré-Natal/genética , Criança , Diabetes Mellitus Tipo 1/genética , RNA não Traduzido/genética , RNA não Traduzido/sangue , RNA Longo não Codificante/genética , Ilhas de CpG/genética
2.
BMC Med Genomics ; 17(1): 127, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730335

RESUMO

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Metástase Neoplásica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Prognóstico , Biomarcadores Tumorais/genética , Ilhas de CpG/genética , Microambiente Tumoral , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Nomogramas
3.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773655

RESUMO

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Assuntos
Metilação de DNA , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Metilação de DNA/genética , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Rituximab/uso terapêutico , Idoso de 80 Anos ou mais , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Vincristina/uso terapêutico , Prednisona/uso terapêutico , Telômero/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encurtamento do Telômero/genética , Epigênese Genética/genética , Ilhas de CpG/genética
4.
Clin Epigenetics ; 16(1): 64, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730337

RESUMO

BACKGROUND: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS: We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.


Assuntos
Cartilagem Articular , Condrócitos , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Organoides , Osteoartrite , Metilação de DNA/genética , Humanos , Osteoartrite/genética , Ilhas de CpG/genética , Condrócitos/metabolismo , Organoides/metabolismo , Epigênese Genética/genética , Cartilagem Articular/metabolismo
5.
J Transl Med ; 22(1): 428, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711158

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) has been a leading cause of cancer-related mortality worldwide. Early intervention can significantly improve prognosis. DNA methylation could occur in the early stage of tumor. Comprehensive understanding the epigenetic landscape of early-stage LUAD is crucial in understanding tumorigenesis. METHODS: Enzymatic methyl sequencing (EM-seq) was performed on 23 tumors and paired normal tissue to reveal distinct epigenetic landscape, for compared with The Cancer Genome Atlas (TCGA) 450K methylation microarray data. Then, an integrative analysis was performed combined with TCGA LUAD RNA-seq data to identify significant differential methylated and expressed genes. Subsequently, the prognostic risk model was constructed and cellular composition was analyzed. RESULTS: Methylome analysis of EM-seq comparing tumor and normal tissues identified 25 million cytosine-phosphate-guanine (CpG) sites and 30,187 differentially methylated regions (DMR) with a greater number of untraditional types. EM-seq identified a significantly higher number of CpG sites and DMRs compared to the 450K microarray. By integrating the differentially methylated genes (DMGs) with LUAD-related differentially expressed genes (DEGs) from the TCGA database, we constructed prognostic model based on six differentially methylated-expressed genes (MEGs) and verified our prognostic model in GSE13213 and GSE42127 dataset. Finally, cell deconvolution based on the in-house EM-seq methylation profile was used to estimate cellular composition of early-stage LUAD. CONCLUSIONS: This study firstly delves into novel pattern of epigenomic DNA methylation and provides a multidimensional analysis of the role of DNA methylation revealed by EM-seq in early-stage LUAD, providing distinctive insights into its potential epigenetic mechanisms.


Assuntos
Adenocarcinoma de Pulmão , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Metilação de DNA/genética , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Perfilação da Expressão Gênica , Ilhas de CpG/genética , Feminino , Estadiamento de Neoplasias , Masculino , Pessoa de Meia-Idade , Genoma Humano , Idoso
6.
Ann Neurol ; 95(6): 1162-1172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563317

RESUMO

OBJECTIVE: To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS: At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION: We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.


Assuntos
Biomarcadores , Metilação de DNA , Epigênese Genética , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/sangue , Masculino , Feminino , Metilação de DNA/genética , Idoso , Pessoa de Meia-Idade , Biomarcadores/sangue , Epigênese Genética/genética , Epigenoma/genética , Ilhas de CpG/genética
7.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565301

RESUMO

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Assuntos
Carcinoma Hepatocelular , Citocromo P-450 CYP1A2 , Metilação de DNA , Epigênese Genética , Neoplasias Hepáticas , Sorafenibe , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Metilação de DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , DNA Metiltransferase 3A , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina/farmacologia , Ilhas de CpG/genética , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
8.
Clin Epigenetics ; 16(1): 57, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659084

RESUMO

BACKGROUND: Heart failure (HF) is a disease that poses a serious threat to individual health, and DNA methylation is an important mechanism in epigenetics, and its role in the occurrence and development of the disease has attracted more and more attention. The aim of this study was to evaluate the link between iodothyronine deiodinase 3 promoter region fragment FA27 (DIO3-FA27) methylation levels, biochemical indices, and HF. RESULTS: The methylation levels of DIO3-FA27_CpG_11.12 and DIO3-FA27_CpG_23.24 significantly differed in HF patients with different degrees. Multivariate logistic regression analysis indicated that the relative HF risk in the third and fourth quartiles of activated partial thromboplastin time and fibrin degradation products. The results of the restricted cubic spline model showed that the methylation levels of DIO3-FA 27_CpG_11.12 and DIO3-FA 27_CpG_23.24 were associated with coagulation indicators, liver function, renal function, and blood routine. CONCLUSIONS: Based on the differential analysis of CpG methylation levels based on DIO3-FA27, it was found that biochemical indicators combined with DIO3-FA27 promoter DNA methylation levels could increase the risk of worsening the severity classification of HF patients, which provided a solid foundation and new insights for the study of epigenetic regulation mechanisms in patients with HF.


Assuntos
Metilação de DNA , Progressão da Doença , Epigênese Genética , Insuficiência Cardíaca , Iodeto Peroxidase , Regiões Promotoras Genéticas , Humanos , Insuficiência Cardíaca/genética , Metilação de DNA/genética , Masculino , Feminino , Iodeto Peroxidase/genética , Pessoa de Meia-Idade , Idoso , Epigênese Genética/genética , Ilhas de CpG/genética
9.
Cell Genom ; 4(5): 100541, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38663408

RESUMO

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Monócitos , Adulto , Feminino , Humanos , Masculino , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/imunologia , Pessoa de Meia-Idade , Idoso
10.
Clin Immunol ; 263: 110196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570004

RESUMO

The prognosis of autoimmune thyroid diseases (AITDs), including Hashimoto's disease (HD) and Graves' disease (GD), is difficult to predict. DNA methylation regulates gene expression of immune mediating factors. Interleukin (IL)-10 is a Th2 cytokine that downregulates inflammatory cytokines produced by Th1 cells. To clarify the role of methylation of the IL10 gene in the prognosis of AITD, we evaluated the methylation levels of two CpG sites in the IL10 promoter using pyrosequencing. The methylation levels of the -185 CpG site of the IL10 gene were related to age and GD intractability in GD patients. Furthermore, the C carrier of the IL10-592 A/C polymorphism was related to low methylation levels of the -185 CpG site. The methylation levels of the IL10-185 CpG site of the IL10 gene were related to the intractability of GD and were lower in individuals with the C allele of the IL10-592 A/C polymorphism.


Assuntos
Ilhas de CpG , Metilação de DNA , Doença de Graves , Interleucina-10 , Regiões Promotoras Genéticas , Humanos , Doença de Graves/genética , Doença de Graves/imunologia , Doença de Graves/sangue , Interleucina-10/genética , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Ilhas de CpG/genética , Regiões Promotoras Genéticas/genética , Polimorfismo de Nucleotídeo Único , Idoso , Adulto Jovem , Predisposição Genética para Doença
11.
Aging (Albany NY) ; 16(8): 6694-6716, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663907

RESUMO

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.


Assuntos
Autopsia , Ilhas de CpG , Metilação de DNA , Humanos , Masculino , Feminino , Ilhas de CpG/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Características da Vizinhança , Epigênese Genética , Estudo de Associação Genômica Ampla , Estudos de Coortes
12.
Clin Epigenetics ; 16(1): 60, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685121

RESUMO

BACKGROUND: While multiple studies have investigated the relationship between metabolic syndrome (MetS) and its related traits (fasting glucose, triglyceride, HDL cholesterol, blood pressure, waist circumference) and DNA methylation, our understanding of the epigenetic mechanisms in MetS remains limited. Therefore, we performed an epigenome-wide meta-analysis of blood DNA methylation to identify differentially methylated probes (DMPs) and differentially methylated regions (DMRs) associated with MetS and its components using two independent cohorts comprising a total of 2,334 participants. We also investigated the specific genetic effects on DNA methylation, identified methylation quantitative trait loci (meQTLs) through genome-wide association studies and further utilized Mendelian randomization (MR) to assess how these meQTLs subsequently influence MetS status. RESULTS: We identified 40 DMPs and 27 DMRs that are significantly associated with MetS. In addition, we identified many novel DMPs and DMRs underlying inflammatory and steroid hormonal processes. The most significant associations were observed in 3 DMPs (cg19693031, cg26974062, cg02988288) and a DMR (chr1:145440444-145441553) at the TXNIP, which are involved in lipid metabolism. These CpG sites were identified as coregulators of DNA methylation in MetS, TG and FAG levels. We identified a total of 144 cis-meQTLs, out of which only 13 were found to be associated with DMPs for MetS. Among these, we confirmed the identified causal mediators of genetic effects at CpG sites cg01881899 at ABCG1 and cg00021659 at the TANK genes for MetS. CONCLUSIONS: This study observed whether specific CpGs and methylated regions act independently or are influenced by genetic effects for MetS and its components in the Korean population. These associations between the identified DNA methylation and MetS, along with its individual components, may serve as promising targets for the development of preventive interventions for MetS.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndrome Metabólica , Locos de Características Quantitativas , Humanos , Síndrome Metabólica/genética , Metilação de DNA/genética , Ilhas de CpG/genética , Estudo de Associação Genômica Ampla/métodos , República da Coreia/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Predisposição Genética para Doença/genética , Epigênese Genética/genética , Análise da Randomização Mendeliana/métodos , Epigenoma/genética , Adulto , Idoso , Proteínas de Transporte/genética
13.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
14.
Int J Cancer ; 155(2): 282-297, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489486

RESUMO

Aberrant DNA methylation is a hallmark of many cancer types. Despite our knowledge of epigenetic and transcriptomic alterations in lung adenocarcinoma (LUAD), we lack robust multi-modal molecular classifications for patient stratification. This is partly because the impact of epigenetic alterations on lung cancer development and progression is still not fully understood. To that end, we identified disease-associated processes under epigenetic regulation in LUAD. We performed a genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis by integrating DNA methylation and gene expression data from 453 patients in the TCGA cohort. Using a community detection algorithm, we identified distinct communities of CpG-gene associations with diverse biological processes. Interestingly, we identified a community linked to hormone response and lipid metabolism; the identified CpGs in this community were enriched in enhancer regions and binding regions of transcription factors such as FOXA1/2, GRHL2, HNF1B, AR, and ESR1. Furthermore, the CpGs were connected to their associated genes through chromatin interaction loops. These findings suggest that the expression of genes involved in hormone response and lipid metabolism in LUAD is epigenetically regulated through DNA methylation and enhancer-promoter interactions. By applying consensus clustering on the integrated expression-methylation pattern of the emQTL-genes and CpGs linked to hormone response and lipid metabolism, we further identified subclasses of patients with distinct prognoses. This novel patient stratification was validated in an independent patient cohort of 135 patients and showed increased prognostic significance compared to previously defined molecular subtypes.


Assuntos
Adenocarcinoma de Pulmão , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Locos de Características Quantitativas , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ilhas de CpG/genética , Feminino , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patologia , Perfilação da Expressão Gênica/métodos , Multiômica
15.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433527

RESUMO

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma , Isocitrato Desidrogenase , Fator 4 Semelhante a Kruppel , Mutação , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ilhas de CpG/genética , Feminino , Masculino , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Pessoa de Meia-Idade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto
16.
Cell Immunol ; 399-400: 104823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520831

RESUMO

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Assuntos
Células Dendríticas , Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Receptor Toll-Like 9 , Transgenes , Animais , Células Dendríticas/imunologia , Dependovirus/genética , Camundongos , Terapia Genética/métodos , Receptor Toll-Like 9/imunologia , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Receptores de IgG/imunologia , Receptores de IgG/genética , Receptores de IgG/metabolismo
17.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512414

RESUMO

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Assuntos
Ilhas de CpG , Metilação de DNA , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Ilhas de CpG/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , DNA Metiltransferase 3A/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia
18.
Front Biosci (Schol Ed) ; 16(1): 2, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538343

RESUMO

BACKGROUND: The promoters of mammalian genes contain clusters of CG dinucleotides known as CpG islands. Most mammalian housekeeping genes predominantly contain CpG islands (CGIs), facilitating gene transcription. Numerous studies have explored the physiological implications of the relationship between CGIs and gene expression. However, the evolutionary implications of this relationship remain largely unexplored. Pseudogenes, in contrast, are genomic remnants that have lost their function over evolutionary time. METHODS: In our current research, we employed comparative genomic techniques to demonstrate a correlation between the absence of gene expression due to a lack of CGIs in the gene promoters and pseudogenization. RESULTS: We showed that there is a significant enrichment of tissue-specific genes in the functional orthologs of pseudogenes. We also found a significant correlation between the lack of CGIs and enriched tissue specificity in these functional orthologs of pseudogenes. CONCLUSIONS: We inferred that perhaps tissue-specific genes are more prone to the process of pseudogenization. In this way, because of their impact on gene expression, CGIs may affect the fate of a gene. To our knowledge, this is the first study to propose a connection between CGIs, gene expression, and the pseudogenization process and discuss the evolutionary implications of this potential trilogy.


Assuntos
Genoma , Genômica , Animais , Ilhas de CpG/genética , Mamíferos/genética , Expressão Gênica
19.
Adv Biol (Weinh) ; 8(5): e2300520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379272

RESUMO

Nowadays, prostate cancer is one of the most common forms of malignant neoplasms in men all over the world. Against the background of increasing incidence, there is a high mortality rate from prostate cancer, which is associated with an inadequate treatment strategy. Such a high prevalence of prostate cancer requires the development of methods that can ensure early detection of the disease, improve the effectiveness of treatment, and predict the therapeutic effect. Under these circumstances, it becomes crucial to focus on the development of effective diagnostic and therapeutic approaches. Due to the development of molecular genetic methods, a large number of studies have been accumulated on the role of epigenetic regulation of gene activity in cancer development, since it is epigenetic changes that can be detected at the earliest stages of cancer development. The presence of epigenetic aberrations in tumor tissue and correlations with drug resistance suggest new therapeutic approaches. Detection of epigenetic alterations such as CpG island methylation, histone modification, and microRNAs as biomarkers will improve the diagnosis of the disease, and the use of these strategies as targets for therapy will allow for greater personalization of prostate cancer treatment.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ilhas de CpG/genética
20.
Electrophoresis ; 45(9-10): 897-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385810

RESUMO

In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells. Consequently, our research has revealed variations in methylation percentages that correlate with the method employed for collecting saliva samples. To investigate these concepts, we scrutinized four CpG markers situated within or in proximity to the BCAS4, SLC12A8, SOX2OT, and FAM43A genes. Subsequently, we designed primers based on bioinformatically transformed reference sequences for these markers and rigorously assessed their quality by examining dimer and hairpin formation, melting temperature, and specificity. These loci were identified as saliva markers based on either buccal swabs or spit collection. Yet, there has been minimal or no research conducted to explore the variations in methylation between different collection methods. For this study, buccal, lip, tongue, spit, and nasal swabs were collected from 20 individuals (N = 100). Mock forensic samples, which include chewing gum (N = 10) and cigarettes (N = 10), were also tested. DNA was extracted, bisulfite converted, then amplified using in-house designed assays, and pyrosequenced. The methylation levels were compared to other body fluids (semen, blood, vaginal epithelia, and menstrual blood [N = 32]). A total of 608 pyrosequencing results demonstrated that sampling location and collection method can greatly influence the level of methylation, highlighting the importance of examining multiple collection/deposition methods for body fluids when developing epigenetic markers.


Assuntos
Metilação de DNA , Epigênese Genética , Saliva , Manejo de Espécimes , Humanos , Saliva/química , Epigênese Genética/genética , Manejo de Espécimes/métodos , Ilhas de CpG/genética , Feminino , Genética Forense/métodos , Masculino , Marcadores Genéticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA