Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Food Res Int ; 192: 114758, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147491

RESUMO

The geographical origin of Panax ginseng significantly influences its nutritional value and chemical composition, which in turn affects its market price. Traditional methods for analyzing these differences are often time-consuming and require substantial quantities of reagents, rendering them inefficient. Therefore, hyperspectral imaging (HSI) in conjunction with X-ray technology were used for the swift and non-destructive traceability of Panax ginseng origin. Initially, outlier samples were effectively rejected by employing a combined isolated forest algorithm and density peak clustering (DPC) algorithm. Subsequently, random forest (RF) and support vector machine (SVM) classification models were constructed using hyperspectral spectral data. These models were further optimized through the application of 72 preprocessing methods and their combinations. Additionally, to enhance the model's performance, four variable screening algorithms were employed: SelectKBest, genetic algorithm (GA), least absolute shrinkage and selection operator (LASSO), and permutation feature importance (PFI). The optimized model, utilizing second derivative, auto scaling, permutation feature importance, and support vector machine (2nd Der-AS-PFI-SVM), achieved a prediction accuracy of 93.4 %, a Kappa value of 0.876, a Brier score of 0.030, an F1 score of 0.932, and an AUC of 0.994 on an independent prediction set. Moreover, the image data (including color information and texture information) extracted from color and X-ray images were used to construct classification models and evaluate their performance. Among them, the SVM model constructed using texture information from X -ray images performed the best, and it achieved a prediction accuracy of 63.0 % on the validation set, with a Brier score of 0.181, an F1 score of 0.518, and an AUC of 0.553. By implementing mid-level fusion and high-level data fusion based on the Stacking strategy, it was found that the model employing a high-level fusion of hyperspectral spectral information and X-ray images texture information significantly outperformed the model using only hyperspectral spectral information. This advanced model attained a prediction accuracy of 95.2 %, a Kappa value of 0.912, a Brier score of 0.027, an F1 score of 0.952, and an AUC of 0.997 on the independent prediction set. In summary, this study not only provides a novel technical path for fast and non-destructive traceability of Panax ginseng origin, but also demonstrates the great potential of the combined application of HSI and X-ray technology in the field of traceability of both medicinal and food products.


Assuntos
Algoritmos , Imageamento Hiperespectral , Panax , Máquina de Vetores de Suporte , Panax/classificação , Panax/química , Imageamento Hiperespectral/métodos , Luz , Raios X
2.
Sci Rep ; 14(1): 19340, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164367

RESUMO

The quantitative nature of fusarium head blight (FHB) resistance requires further exploration of the wheat genome to identify regions conferring resistance. In this study, we explored the application of hyperspectral imaging of Fusarium-infected wheat kernels and identified regions of the wheat genome contributing significantly to the accumulation of Deoxynivalenol (DON) mycotoxin. Strong correlations were identified between hyperspectral reflectance values for 204 wavebands in the 397-673 nm range and DON mycotoxin. Dimensionality reduction using principal components was performed for all 204 wavebands and 38 sliding windows across the range of wavebands. The first principal component (PC1) of all 204 wavebands explained 70% of the total variation in waveband reflectance values and was highly correlated with DON mycotoxin. PC1 was used as a phenotype in a genome wide association study and a large effect QTL on chromosome 2D was identified for PC1 of all wavebands as well as nearly all 38 sliding windows. The allele contributing variation in PC1 values also led to a substantial reduction in DON. The 2D polymorphism affecting DON levels localized to the exon of TraesCS2D02G524600 which is upregulated in wheat spike and rachis tissues during FHB infection. This work demonstrates the value of hyperspectral imaging as a correlated trait for investigating the genetic basis of resistance and developing wheat varieties with enhanced resistance to FHB.


Assuntos
Fusarium , Estudo de Associação Genômica Ampla , Doenças das Plantas , Locos de Características Quantitativas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fenótipo , Genoma de Planta , Resistência à Doença/genética , Imageamento Hiperespectral/métodos
3.
Plant Cell Rep ; 43(9): 220, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158724

RESUMO

KEY MESSAGE: This study provided a non-destructive detection method with Vis-NIR hyperspectral imaging combining with physio-biochemical parameters in Helianthus annuus in response to Orobanche cumana infection that took insights into the monitoring of sunflower weed. Sunflower broomrape (Orobanche cumana Wallr.) is an obligate weed that attaches to the host roots of sunflower (Helianthus annuus L.) leading to a significant reduction in yield worldwide. The emergence of O. cumana shoots after its underground life-cycle causes irreversible damage to the crop. In this study, a fast visual, non-invasive and precise method for monitoring changes in spectral characteristics using visible and near-infrared (Vis-NIR) hyperspectral imaging (HSI) was developed. By combining the bands sensitive to antioxidant enzymes (SOD, GR), non-antioxidant enzymes (GSH, GSH + GSSG), MDA, ROS (O2-, OH-), PAL, and PPO activities obtained from the host leaves, we sought to establish an accurate means of assessing these changes and conducted imaging acquisition using hyperspectral cameras from both infested and non-infested sunflower cultivars, followed by physio-biochemical parameters measurement as well as analyzed the expression of defense related genes. Extreme learning machine (ELM) and convolutional neural network (CNN) models using 3-band images were built to classify infected or non-infected plants in three sunflower cultivars, achieving accuracies of 95.83% and 95.83% for the discrimination of infestation as well as 97.92% and 95.83% of varieties, respectively, indicating the potential of multi-spectral imaging systems for early detection of O. cumana in weed management.


Assuntos
Helianthus , Imageamento Hiperespectral , Orobanche , Helianthus/parasitologia , Orobanche/fisiologia , Imageamento Hiperespectral/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Folhas de Planta/parasitologia , Folhas de Planta/metabolismo , Doenças das Plantas/parasitologia , Antioxidantes/metabolismo , Plantas Daninhas , Interações Hospedeiro-Parasita
4.
J Biomed Opt ; 29(9): 093506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39139794

RESUMO

Significance: Minimally invasive surgery (MIS) has shown vast improvement over open surgery by reducing post-operative stays, intraoperative blood loss, and infection rates. However, in spite of these improvements, there are still prevalent issues surrounding MIS that may be addressed through hyperspectral imaging (HSI). We present a laparoscopic HSI system to further advance the field of MIS. Aim: We present an imaging system that integrates high-speed HSI technology with a clinical laparoscopic setup and validate the system's accuracy and functionality. Different configurations that cover the visible (VIS) to near-infrared (NIR) range of electromagnetism are assessed by gauging the spectral fidelity and spatial resolution of each hyperspectral camera. Approach: Standard Spectralon reflectance tiles were used to provide ground truth spectral footprints to compare with those acquired by our system using the root mean squared error (RMSE). Demosaicing techniques were investigated and used to measure and improve spatial resolution, which was assessed with a USAF resolution test target. A perception-based image quality evaluator was used to assess the demosaicing techniques we developed. Two configurations of the system were developed for evaluation. The functionality of the system was investigated in a phantom study and by imaging ex vivo tissues. Results: Multiple configurations of our system were tested, each covering different spectral ranges, including VIS (460 to 600 nm), red/NIR (RNIR) (610 to 850 nm), and NIR (665 to 950 nm). Each configuration is capable of achieving real-time imaging speeds of up to 20 frames per second. RMSE values of 3.51 ± 2.03 % , 3.43 ± 0.84 % , and 3.47% were achieved for the VIS, RNIR, and NIR systems, respectively. We obtained sub-millimeter resolution using our demosaicing techniques. Conclusions: We developed and validated a high-speed hyperspectral laparoscopic imaging system. The HSI system can be used as an intraoperative imaging tool for tissue classification during laparoscopic surgery.


Assuntos
Desenho de Equipamento , Imageamento Hiperespectral , Laparoscopia , Laparoscopia/métodos , Imageamento Hiperespectral/métodos , Animais , Humanos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Suínos
5.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125982

RESUMO

Seed vigor significantly affects peanut breeding and agricultural yield by influencing seed germination and seedling growth and development. Traditional vigor testing methods are inadequate for modern high-throughput assays. Although hyperspectral technology shows potential for monitoring various crop traits, its application in predicting peanut seed vigor is still limited. This study developed and validated a method that combines hyperspectral technology with genome-wide association studies (GWAS) to achieve high-throughput detection of seed vigor and identify related functional genes. Hyperspectral phenotyping data and physiological indices from different peanut seed populations were used as input data to construct models using machine learning regression algorithms to accurately monitor changes in vigor. Model-predicted phenotypic data from 191 peanut varieties were used in GWAS, gene-based association studies, and haplotype analyses to screen for functional genes. Real-time fluorescence quantitative PCR (qPCR) was used to analyze the expression of functional genes in three high-vigor and three low-vigor germplasms. The results indicated that the random forest and support vector machine models provided effective phenotypic data. We identified Arahy.VMLN7L and Arahy.7XWF6F, with Arahy.VMLN7L negatively regulating seed vigor and Arahy.7XWF6F positively regulating it, suggesting distinct regulatory mechanisms. This study confirms that GWAS based on hyperspectral phenotyping reveals genetic relationships in seed vigor levels, offering novel insights and directions for future peanut breeding, accelerating genetic improvements, and boosting agricultural yields. This approach can be extended to monitor and explore germplasms and other key variables in various crops.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Fenótipo , Sementes , Arachis/genética , Arachis/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla/métodos , Sementes/genética , Sementes/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Melhoramento Vegetal/métodos , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Imageamento Hiperespectral/métodos , Haplótipos
6.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001041

RESUMO

Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R2 of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R2 of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production.


Assuntos
Imageamento Hiperespectral , Polifenóis , Plântula , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Polifenóis/análise , Plântula/química , Imageamento Hiperespectral/métodos , Temperatura Baixa
7.
Ecotoxicol Environ Saf ; 282: 116704, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996646

RESUMO

Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In this study, a novel spectral approach assisted with multi-task deep learning was proposed to streamline accumulating ecotype screening, heavy metal stress discrimination, and heavy metals quantification in plants. The significant Cd/Zn co-hyperaccumulator Sedum alfredii and its non-accumulating ecotype were stressed by Cd, Zn, and Pb. Spectral images of leaves were rapidly acquired by hyperspectral imaging. The self-designed deep learning architecture was composed of a shallow network (ENet) for accumulating ecotype identification, and a multi-task network (HMNet) for heavy metal stress type and accumulation prediction simultaneously. To further assess the robustness of the networks, they were compared with conventional machine learning models (i.e., partial least squares (PLS) and support vector machine (SVM)) on a series of evaluation metrics of classification, multi-label classification, and regression. S. alfredii with heavy metals accumulation capability was identified by ENet with 100 % accuracy. HMNet reduced overfitting and outperformed machine learning models with the average exact match ratio (EMR) of heavy metal stress discrimination increased by 7.46 %, and residual prediction deviations (RPD) of heavy metal concentrations prediction increased by 53.59 %. The method succeeded in rapidly and accurately discriminating heavy metal stress with EMRs over 91 % and accuracies over 96 %, and in predicting heavy metals accumulation with an average RPD of 3.29 for Zn, 2.57 for Cd, and 2.53 for Pb, indicating the satisfactory practicability and potential for sensing heavy metals accumulation. This study provides a relatively novel spectral method to facilitate hyperaccumulator screening and heavy metals accumulation prediction in the phytoremediation process.


Assuntos
Biodegradação Ambiental , Aprendizado Profundo , Metais Pesados , Sedum , Poluentes do Solo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Metais Pesados/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Imageamento Hiperespectral/métodos , Folhas de Planta/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Zinco/metabolismo , Zinco/análise , Máquina de Vetores de Suporte
8.
Comput Biol Med ; 179: 108849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018883

RESUMO

Hyperspectral imaging (HSI) is gaining increasing relevance in medicine, with an innovative application being the intraoperative assessment of the outcome of laser ablation treatment used for minimally invasive tumor removal. However, the high dimensionality and complexity of HSI data create a need for end-to-end image processing workflows specifically tailored to handle these data. This study addresses this challenge by proposing a multi-stage workflow for the analysis of hyperspectral data and allows investigating the performance of different components and modalities for ablation detection and segmentation. To address dimensionality reduction, we integrated principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) to capture dominant variations and reveal intricate structures, respectively. Additionally, we employed the Faster Region-based Convolutional Neural Network (Faster R-CNN) to accurately localize ablation areas. The two-stage detection process of Faster R-CNN, along with the choice of dimensionality reduction technique and data modality, significantly influenced the performance in detecting ablation areas. The evaluation of the ablation detection on an independent test set demonstrated a mean average precision of approximately 0.74, which validates the generalization ability of the models. In the segmentation component, the Mean Shift algorithm showed high quality segmentation without manual cluster definition. Our results prove that the integration of PCA, t-SNE, and Faster R-CNN enables improved interpretation of hyperspectral data, leading to the development of reliable ablation detection and segmentation systems.


Assuntos
Imageamento Hiperespectral , Terapia a Laser , Aprendizado de Máquina , Terapia a Laser/métodos , Imageamento Hiperespectral/métodos , Humanos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Análise de Componente Principal
9.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065834

RESUMO

Varroa mite infestation poses a severe threat to honeybee colonies globally. This study investigates the feasibility of utilizing the HS-Cam and machine learning techniques for Varroa mite counting. The methodology involves image acquisition, dimensionality reduction through Principal Component Analysis (PCA), and machine learning-based segmentation and classification algorithms. Specifically, a k-Nearest Neighbors (kNNs) model distinguishes Varroa mites from other objects in the images, while a Support Vector Machine (SVM) classifier enhances shape detection. The final phase integrates a dedicated counting algorithm, leveraging outputs from the SVM classifier to quantify Varroa mite populations in hyperspectral images. The preliminary results demonstrate segmentation accuracy exceeding 99% and an average precision of 0.9983 and recall of 0.9947 across all the classes. The results obtained from our machine learning-based approach for Varroa mite counting were compared against ground-truth labels obtained through manual counting, demonstrating a high degree of agreement between the automated counting and manual ground truth. Despite working with a limited dataset, the HS-Cam showcases its potential for Varroa counting, delivering superior performance compared to traditional RGB images. Future research directions include validating the proposed hyperspectral imaging methodology with a more extensive and diverse dataset. Additionally, the effectiveness of using a near-infrared (NIR) excitation source for Varroa detection will be explored, along with assessing smartphone integration feasibility.


Assuntos
Algoritmos , Imageamento Hiperespectral , Análise de Componente Principal , Máquina de Vetores de Suporte , Varroidae , Animais , Imageamento Hiperespectral/métodos , Abelhas/parasitologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
10.
Comput Methods Programs Biomed ; 254: 108285, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964248

RESUMO

BACKGROUND AND OBJECTIVE: In renal disease research, precise glomerular disease diagnosis is crucial for treatment and prognosis. Currently reliant on invasive biopsies, this method bears risks and pathologist-dependent variability, yielding inconsistent results. There is a pressing need for innovative diagnostic tools that enhance traditional methods, streamline processes, and ensure accurate and consistent disease detection. METHODS: In this study, we present an innovative Convolutional Neural Networks-Vision Transformer (CVT) model leveraging Transformer technology to refine glomerular disease diagnosis by fusing spectral and spatial data, surpassing traditional diagnostic limitations. Using interval sampling, preprocessing, and wavelength optimization, we also introduced the Gramian Angular Field (GAF) method for a unified representation of spectral and spatial characteristics. RESULTS: We captured hyperspectral images ranging from 385.18 nm to 1009.47 nm and employed various methods to extract sample features. Initial models based solely on spectral features achieved a accuracy of 85.24 %. However, the CVT model significantly outperformed these, achieving an average accuracy of 94 %. This demonstrates the model's superior capability in utilizing sample data and learning joint feature representations. CONCLUSIONS: The CVT model not only breaks through the limitations of existing diagnostic techniques but also showcases the vast potential of non-invasive, high-precision diagnostic technology in supporting the classification and prognosis of complex glomerular diseases. This innovative approach could significantly impact future diagnostic strategies in renal disease research. CONCISE ABSTRACT: This study introduces a transformative hyperspectral image classification model leveraging a Transformer to significantly improve glomerular disease diagnosis accuracy by synergizing spectral and spatial data, surpassing conventional methods. Through a rigorous comparative analysis, it was determined that while spectral features alone reached a peak accuracy of 85.24 %, the novel Convolutional Neural Network-Transformer (CVT) model's integration of spatial-spectral features via the Gramian Angular Field (GAF) method markedly enhanced diagnostic precision, achieving an average accuracy of 94 %. This methodological innovation not only overcomes traditional diagnostic limitations but also underscores the potential of non-invasive, high-precision technologies in advancing the classification and prognosis of complex renal diseases, setting a new benchmark in the field.


Assuntos
Imageamento Hiperespectral , Nefropatias , Redes Neurais de Computação , Humanos , Imageamento Hiperespectral/métodos , Nefropatias/classificação , Nefropatias/diagnóstico por imagem , Nefropatias/diagnóstico , Algoritmos , Glomérulos Renais/patologia , Glomérulos Renais/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
11.
Sci Rep ; 14(1): 15643, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977722

RESUMO

The wide gap between the demand and supply of edible mustard oil can be overcome to a certain extent by enhancing the oil-recovery during mechanical oil expression. It has been reported that microwave (MW) pre-treatment of mustard seeds can have a positive effect on the availability of mechanically expressible oil. Hyperspectral imaging (HSI) was used to understand the change in spatial spread of oil in the microwave (MW) treated seeds with bed thickness and time of exposure as variables, using visible near-infrared (Vis-NIR, 400-1000 nm) and short-wave infrared (SWIR, 1000-1700 nm) systems. The spectral data was analysed using chemometric techniques such as partial least square discriminant analysis (PLS-DA) and regression (PLSR) to develop prediction models. The PLS-DA model demonstrated a strong capability to classify the mustard seeds subjected to different MW pre-treatments from control samples with a high accuracy level of 96.6 and 99.5% for Vis-NIR and SWIR-HSI, respectively. PLSR model developed with SWIR-HSI spectral data predicted (R2 > 0.90) the oil content and fatty acid components such as oleic acid, erucic acid, saturated fatty acids, and PUFAs closest to the results obtained by analytical techniques. However, these predictions (R2 > 0.70) were less accurate while using the Vis-NIR spectral data.


Assuntos
Micro-Ondas , Mostardeira , Óleos de Plantas , Sementes , Espectroscopia de Luz Próxima ao Infravermelho , Mostardeira/química , Sementes/química , Óleos de Plantas/química , Óleos de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imageamento Hiperespectral/métodos , Quimiometria/métodos , Análise dos Mínimos Quadrados
12.
PeerJ ; 12: e17663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035157

RESUMO

Background: The species composition of and changes in grassland communities are important indices for inferring the number, quality and community succession of grasslands, and accurate monitoring is the foundation for evaluating, protecting, and utilizing grassland resources. Remote sensing technology provides a reliable and powerful approach for measuring regional terrain information, and the identification of grassland species by remote sensing will improve the quality and effectiveness of grassland monitoring. Methods: Ground hyperspectral images of a sericite-Artemisia desert grassland in different seasons were obtained with a Soc710 VP imaging spectrometer. First-order differential processing was used to calculate the characteristic parameters. Analysis of variance was used to extract the main species, namely, Seriphidium transiliense (Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the spectral characteristic parameters and vegetation indices in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land. Results: The selection of parameters with significant differences (P < 0.05) between the recognition objects effectively distinguished different land features, and the identification parameters also differed due to differences in growth period and species. The overall accuracy of the recognition model established by the vegetation index decreased in the following order: June (98.87%) > September (91.53%) > April (90.37%). The overall accuracy of the recognition model established by the feature parameters decreased in the following order: September (89.77%) > June (88.48%) > April (85.98%). Conclusions: The recognition models based on vegetation indices in different months are superior to those based on feature parameters, with overall accuracies ranging from 1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices as identification parameters can enable the identification of the main plants in sericite-Artemisia desert grassland, providing a basis for further quantitative classification of the species in community images.


Assuntos
Clima Desértico , Pradaria , Tecnologia de Sensoriamento Remoto/métodos , Imageamento Hiperespectral/métodos , Artemisia/classificação , China , Estações do Ano , Análise Discriminante
13.
Int J Food Microbiol ; 423: 110831, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083880

RESUMO

In this study, a multi-scale attention transformer (MSAT) was coupled with hyperspectral imaging for classifying peanut kernels contaminated with diverse Aspergillus flavus fungi. The results underscored that the MSAT significantly outperformed classic deep learning models, due to its sophisticated multi-scale attention mechanism which enhanced its classification capabilities. The multi-scale attention mechanism was utilized by employing several multi-head attention layers to focus on both fine-scale and broad-scale features. It also integrated a series of scale processing layers to capture features at different resolutions and incorporated a self-attention mechanism to integrate information across different levels. The MSAT model achieved outstanding performance in different classification tasks, particularly in distinguishing healthy peanut kernels from those contaminated with aflatoxigenic fungi, with test accuracy achieving 98.42±0.22%. However, it faced challenges in differentiating peanut kernels contaminated with aflatoxigenic fungi from those with non-aflatoxigenic contamination. Visualization of attention weights explicitly revealed that the MSAT model's multi-scale attention mechanism progressively refined its focus from broad spatial-spectral features to more specialized signatures. Overall, the MSAT model's advanced processing capabilities marked a notable advancement in the field of food quality safety, offering a robust and reliable tool for the rapid and accurate detection of Aspergillus flavus contaminations in food.


Assuntos
Arachis , Aspergillus flavus , Contaminação de Alimentos , Microbiologia de Alimentos , Aspergillus flavus/isolamento & purificação , Arachis/microbiologia , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Aflatoxinas/análise , Imageamento Hiperespectral/métodos
14.
Sci Total Environ ; 949: 175076, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069175

RESUMO

This study explored the feasibility of employing hyperspectral imaging (HSI) technology to quantitatively assess the effect of silicon (Si) on lead (Pb) content in oilseed rape leaves. Aiming at the defects of hyperspectral data with high dimension and redundant information, this paper proposed two improved feature wavelength extraction algorithms, repetitive interval combination optimization (RICO) and interval combination optimization (ICO) combined with stepwise regression (ICO-SR). The entire oilseed rape leaves were taken as the region of interest (ROI) to extract the visible near-infrared hyperspectral data within the 400.89-1002.19 nm range. In data processing, Savitzky-Golay (SG) smoothing, detrending (DT), and multiple scatter correction (MSC) were utilized for spectral data preprocessing, while recursive feature elimination (RFE), iteratively variable subset optimization (IVSO), ICO, and the two enhanced algorithms were employed to identify characteristic wavelengths. Subsequently, based on the spectral data of preprocessing and feature extraction, partial least squares regression (PLSR) and support vector regression (SVR) methods were used to construct various Pb content prediction models in oilseed rape leaves, with a comparison and analysis of each model performance. The results indicated that the two improved algorithms were more efficient in extracting representative spectral information than conventional methods, and the performance of SVR models was better than PLSR models. Finally, to further improve the prediction accuracy and robustness of the SVR models, the whale optimization algorithm (WOA) was introduced to optimize their parameters. The findings demonstrated that the MSC-RICO-WOA-SVR model achieved the best comprehensive performance, with Rp2 of 0.9436, RMSEP of 0.0501 mg/kg, and RPD of 3.4651. The results further confirmed the great potential of HSI combined with feature extraction algorithms to evaluate the effectiveness of Si in alleviating Pb stress in oilseed rape and provided a theoretical basis for determining the appropriate amount of Si application to alleviate Pb pollution in oilseed rape.


Assuntos
Chumbo , Folhas de Planta , Silício , Folhas de Planta/química , Chumbo/análise , Imageamento Hiperespectral/métodos , Monitoramento Ambiental/métodos , Algoritmos , Brassica napus , Análise dos Mínimos Quadrados
15.
J Food Sci ; 89(7): 4403-4418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957090

RESUMO

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.


Assuntos
Citrullus , Imageamento Hiperespectral , Aprendizado de Máquina , Sementes , Espectroscopia de Luz Próxima ao Infravermelho , Citrullus/química , Sementes/química , Imageamento Hiperespectral/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Máquina de Vetores de Suporte , Algoritmos
16.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998920

RESUMO

(1) Background: To achieve the rapid, non-destructive detection of corn freshness and staleness for better use in the storage, processing and utilization of corn. (2) Methods: In this study, three varieties of corn were subjected to accelerated aging treatment to study the trend in fatty acid values of corn. The study focused on the use of hyperspectral imaging technology to collect information from corn samples with different aging levels. Spectral data were preprocessed by a convolutional smoothing derivative method (SG, SG1, SG2), derivative method (D1, D2), multiple scattering correction (MSC), and standard normal transform (SNV); the characteristic wavelengths were extracted by the competitive adaptive reweighting method (CARS) and successive projection algorithm (SPA); a neural network (BP) and random forest (RF) were utilized to establish a prediction model for the quantification of fatty acid values of corn. And, the distribution of fatty acid values was visualized based on fatty acid values under the corresponding optimal prediction model. (3) Results: With the prolongation of the aging time, all three varieties of corn showed an overall increasing trend. The fatty acid value of corn can be used as the most important index for characterizing the degree of aging of corn. SG2-SPA-RF was the quantitative prediction model for optimal fatty acid values of corn. The model extracted 31 wavelengths, only 12.11% of the total number of wavelengths, where the coefficient of determination RP2 of the test set was 0.9655 and the root mean square error (RMSE) was 3.6255. (4) Conclusions: This study can provide a reliable and effective new method for the rapid non-destructive testing of corn freshness.


Assuntos
Ácidos Graxos , Imageamento Hiperespectral , Zea mays , Zea mays/química , Imageamento Hiperespectral/métodos , Ácidos Graxos/análise , Redes Neurais de Computação , Algoritmos
17.
Crit Care ; 28(1): 230, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987802

RESUMO

BACKGROUND: Impaired microcirculation is a cornerstone of sepsis development and leads to reduced tissue oxygenation, influenced by fluid and catecholamine administration during treatment. Hyperspectral imaging (HSI) is a non-invasive bedside technology for visualizing physicochemical tissue characteristics. Machine learning (ML) for skin HSI might offer an automated approach for bedside microcirculation assessment, providing an individualized tissue fingerprint of critically ill patients in intensive care. The study aimed to determine if machine learning could be utilized to automatically identify regions of interest (ROIs) in the hand, thereby distinguishing between healthy individuals and critically ill patients with sepsis using HSI. METHODS: HSI raw data from 75 critically ill sepsis patients and from 30 healthy controls were recorded using TIVITA® Tissue System and analyzed using an automated ML approach. Additionally, patients were divided into two groups based on their SOFA scores for further subanalysis: less severely ill (SOFA ≤ 5) and severely ill (SOFA > 5). The analysis of the HSI raw data was fully-automated using MediaPipe for ROI detection (palm and fingertips) and feature extraction. HSI Features were statistically analyzed to highlight relevant wavelength combinations using Mann-Whitney-U test and Benjamini, Krieger, and Yekutieli (BKY) correction. In addition, Random Forest models were trained using bootstrapping, and feature importances were determined to gain insights regarding the wavelength importance for a model decision. RESULTS: An automated pipeline for generating ROIs and HSI feature extraction was successfully established. HSI raw data analysis accurately distinguished healthy controls from sepsis patients. Wavelengths at the fingertips differed in the ranges of 575-695 nm and 840-1000 nm. For the palm, significant differences were observed in the range of 925-1000 nm. Feature importance plots indicated relevant information in the same wavelength ranges. Combining palm and fingertip analysis provided the highest reliability, with an AUC of 0.92 to distinguish between sepsis patients and healthy controls. CONCLUSION: Based on this proof of concept, the integration of automated and standardized ROIs along with automated skin HSI analyzes, was able to differentiate between healthy individuals and patients with sepsis. This approach offers a reliable and objective assessment of skin microcirculation, facilitating the rapid identification of critically ill patients.


Assuntos
Estado Terminal , Imageamento Hiperespectral , Aprendizado de Máquina , Microcirculação , Humanos , Aprendizado de Máquina/normas , Masculino , Feminino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Idoso , Imageamento Hiperespectral/métodos , Sepse/fisiopatologia , Sepse/diagnóstico , Adulto , Estudo de Prova de Conceito , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
18.
Sci Rep ; 14(1): 17262, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068299

RESUMO

Accurate intraoperative assessment of organ perfusion is a pivotal determinant in preserving organ function e.g. during kidney surgery including partial nephrectomy or kidney transplantation. Hyperspectral imaging (HSI) has great potential to objectively describe and quantify this perfusion as opposed to conventional surrogate techniques such as ultrasound flowmeter, indocyanine green or the subjective eye of the surgeon. An established live porcine model under general anesthesia received median laparotomy and renal mobilization. Different scenarios that were measured using HSI were (1) complete, (2) gradual and (3) partial malperfusion. The differences in spectral reflectance as well as HSI oxygenation (StO2) between different perfusion states were compelling and as high as 56.9% with 70.3% (± 11.0%) for "physiological" vs. 13.4% (± 3.1%) for "venous congestion". A machine learning (ML) algorithm was able to distinguish between these perfusion states with a balanced prediction accuracy of 97.8%. Data from this porcine study including 1300 recordings across 57 individuals was compared to a human dataset of 104 recordings across 17 individuals suggesting clinical transferability. Therefore, HSI is a highly promising tool for intraoperative microvascular evaluation of perfusion states with great advantages over existing surrogate techniques. Clinical trials are required to prove patient benefit.


Assuntos
Imageamento Hiperespectral , Rim , Animais , Suínos , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Rim/cirurgia , Imageamento Hiperespectral/métodos , Humanos , Inteligência Artificial , Nefrectomia/métodos , Perfusão/métodos
19.
J Biomed Opt ; 29(9): 093504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39040986

RESUMO

Significance: Hyperspectral imaging (HSI) of murine tumor models grown in dorsal skinfold window chambers (DSWCs) offers invaluable insight into the tumor microenvironment. However, light loss in a glass coverslip is often overlooked, and particular tissue characteristics are improperly modeled, leading to errors in tissue properties extracted from hyperspectral images. Aim: We highlight the significance of spectral renormalization in HSI of DSWC models and demonstrate the benefit of incorporating enhanced green fluorescent protein (EGFP) excitation and emission in the skin tissue model for tumors expressing genes to produce EGFP. Approach: We employed an HSI system for intravital imaging of mice with 4T1 mammary carcinoma in a DSWC over 14 days. We performed spectral renormalization of hyperspectral images based on the measured reflectance spectra of glass coverslips and utilized an inverse adding-doubling (IAD) algorithm with a two-layer murine skin model, to extract tissue parameters, such as total hemoglobin concentration and tissue oxygenation ( StO 2 ). The model was upgraded to consider EGFP fluorescence excitation and emission. Moreover, we conducted additional experiments involving tissue phantoms, human forearm skin imaging, and numerical simulations. Results: Hyperspectral image renormalization and the addition of EGFP fluorescence in the murine skin model reduced the mean absolute percentage errors (MAPEs) of fitted and measured spectra by up to 10% in tissue phantoms, 0.55% to 1.5% in the human forearm experiment and numerical simulations, and up to 0.7% in 4T1 tumors. Similarly, the MAPEs for tissue parameters extracted by IAD were reduced by up to 3% in human forearms and numerical simulations. For some parameters, statistically significant differences ( p < 0.05 ) were observed in 4T1 tumors. Ultimately, we have shown that fluorescence emission could be helpful for 4T1 tumor segmentation. Conclusions: The results contribute to improving intravital monitoring of DWSC models using HSI and pave the way for more accurate and precise quantitative imaging.


Assuntos
Proteínas de Fluorescência Verde , Imageamento Hiperespectral , Animais , Camundongos , Feminino , Imageamento Hiperespectral/métodos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular Tumoral , Algoritmos , Camundongos Endogâmicos BALB C , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Pele/diagnóstico por imagem , Pele/química , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos
20.
Cell Rep ; 43(7): 114463, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985675

RESUMO

Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.


Assuntos
Regulação da Expressão Gênica de Plantas , Imageamento Hiperespectral , Marchantia , Pigmentação , Proteínas de Plantas , Pigmentação/genética , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imageamento Hiperespectral/métodos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA