Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.785
Filtrar
1.
Biomaterials ; 312: 122745, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098306

RESUMO

Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.


Assuntos
Imunoterapia , Manganês , Nanopartículas , Animais , Imunoterapia/métodos , Manganês/química , Nanopartículas/química , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Porfirinas/química , Porfirinas/farmacologia , Clorofilídeos , Neoplasias/terapia , Neoplasias/imunologia , Fotoquimioterapia/métodos , Imunidade Inata/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
2.
Methods Mol Biol ; 2854: 265-282, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192136

RESUMO

Protein kinase R (PKR), a key double-stranded RNA (dsRNA)-activated sensor, is pivotal for cellular responses to diverse stimuli. This protocol delineates a comprehensive methodological framework employing single luciferase assays, yeast assays, immunoblot assays, and quantitative PCR (qPCR) to discern and validate PKR activities and their downstream impacts on NF-κB-activating signaling pathways. These methodologies furnish a systematic approach to unraveling the role of PKR as a dsRNA sensor and effector in antiviral innate immunity, enabling in-depth analyses of dsRNA sensor activities.


Assuntos
Imunidade Inata , RNA de Cadeia Dupla , eIF-2 Quinase , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/genética , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Animais
3.
Methods Mol Biol ; 2854: 1-7, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192112

RESUMO

Antiviral innate immunity is a complicated system initiated by the induction of type I interferon (IFN-I) and downstream interferon-stimulated genes (ISGs) and is finely regulated by numerous positive and negative factors at different signaling adaptors. During this process, posttranslational modifications, especially ubiquitination, are the most common regulatory strategy used by the host to switch the antiviral innate signaling pathway and are mainly controlled by E3 ubiquitin ligases from different protein families. A comprehensive understanding of the regulatory mechanisms and a novel discovery of regulatory factors involved in the IFN-I signaling pathway are important for researchers to identify novel therapeutic targets against viral infectious diseases based on innate immunotherapy. In this section, we use the E3 ubiquitin ligase as an example to guide the identification of a protein belonging to the RING Finger (RNF) family that regulates the RIG-I-mediated IFN-I pathway through ubiquitination.


Assuntos
Imunidade Inata , Interferon Tipo I , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferon Tipo I/metabolismo , Viroses/imunologia , Viroses/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética
4.
Methods Mol Biol ; 2854: 41-50, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192117

RESUMO

The innate immune system relies on a variety of pathogen recognition receptors (PRRs) as the first line of defense against pathogenic invasions. Viruses have evolved multiple strategies to evade the host immune system through coevolution with hosts. The CRISPR-Cas system is an adaptive immune system in bacteria or archaea that defends against viral reinvasion by targeting nucleic acids for cleavage. Based on the characteristics of Cas proteins and their variants, the CRISPR-Cas system has been developed into a versatile gene-editing tool capable of gene knockout or knock-in operations to achieve genetic variations in organisms. It is now widely used in the study of viral immune evasion mechanisms. This chapter will introduce the use of the CRISPR-Cas9 system for editing herpes simplex virus 1 (HSV-1) genes to explore the mechanisms by which HSV-1 evades host innate immunity and the experimental procedures involved.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Herpesvirus Humano 1 , Evasão da Resposta Imune , Imunidade Inata , Sistemas CRISPR-Cas/genética , Imunidade Inata/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Evasão da Resposta Imune/genética , Humanos , Edição de Genes/métodos , Animais , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/genética
5.
Methods Mol Biol ; 2854: 51-60, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192118

RESUMO

The application of CRISPR-mediated library screening has fundamentally transformed functional genomics by revealing the complexity of virus-host interactions. This protocol describes the use of CRISPR-mediated library screening to identify key functional genes regulating the innate immune response to PEDV infection. We detail a step-by-step process, starting from the design and construction of a customized CRISPR knockout library targeting genes involved in innate immunity to the effective delivery of these constructs into cells using lentiviral vectors. Subsequently, we outline the process of identifying functional genes postviral attack, including the use of next-generation sequencing (NGS), to analyze and identify knockout cells that exhibit altered responses to infection. This integrated approach provides researchers in immunology and virology with a resource and a robust framework for uncovering the genetic basis of host-pathogen interactions and the arsenal of the innate immune system against viral invasions.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Biblioteca Gênica , Imunidade Inata , Imunidade Inata/genética , Sistemas CRISPR-Cas/genética , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Linhagem Celular , Lentivirus/genética
6.
Methods Mol Biol ; 2854: 9-18, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192113

RESUMO

Antiviral innate immunity is the first line of defence against viruses. The interferon (IFN) signaling pathway, the DNA damage response (DDR), apoptosis, endoplasmic reticulum (ER) stress, and autophagy are involved in antiviral innate immunity. Viruses abrogate the antiviral immune response of cells to replication in various ways. Viral genes/proteins play a key role in evading antiviral innate immunity. Here, we will discuss the interference of viruses with antiviral innate immunity and the strategy for identifying viral gene/protein immune evasion.


Assuntos
Imunidade Inata , Humanos , Proteínas Virais/imunologia , Proteínas Virais/genética , Vírus/imunologia , Vírus/genética , Evasão da Resposta Imune , Viroses/imunologia , Viroses/virologia , Animais , Genes Virais , Autofagia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais/imunologia
7.
Methods Mol Biol ; 2854: 83-91, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192121

RESUMO

Transcriptomics is an extremely important area of molecular biology and is a powerful tool for studying all RNA molecules in an organism. Conventional transcriptomic technologies include microarrays and RNA sequencing, and the rapid development of single-cell sequencing and spatial transcriptomics in recent years has provided an enormous scope for research in this field. This chapter describes the application, significance, and experimental procedures of a variety of transcriptomic technologies in antiviral natural immunity.


Assuntos
Perfilação da Expressão Gênica , Imunidade Inata , Transcriptoma , Imunidade Inata/genética , Humanos , Perfilação da Expressão Gênica/métodos , Animais , Viroses/imunologia , Viroses/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
8.
Methods Mol Biol ; 2854: 93-106, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192122

RESUMO

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.


Assuntos
Imunidade Inata , Proteômica , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Western Blotting/métodos , Espectrometria de Massas/métodos , Imunoprecipitação/métodos , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Espectrometria de Massa com Cromatografia Líquida
9.
Methods Mol Biol ; 2854: 117-125, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192124

RESUMO

Beyond its role as the bearer of genetic material, DNA also plays a crucial role in the activation phase of innate immunity. Pathogen recognition receptors (PRRs) and their homologs, pathogen-associated molecular patterns (PAMPs), form the foundation for driving innate immune activation and the induction of immune responses during infection. In the context of DNA viruses or bacterial infections, specific DNA sequences are recognized and bound by DNA sensors, marking the DNA as a PAMP for host recognition and subsequent activation of innate immunity. The primary DNA sensor pathway known to date is cGAS-STING, which can induce Type I interferons (IFN) and innate immune responses against viruses and bacteria. Additionally, the cGAS-STING pathway has been identified to mediate functions in autophagy and senescence. Herein, we introduce methods for using DNA PAMPs as molecular tools to study the role of cGAS-STING and its signaling pathway in regulating innate immunity, both in vitro and in vivo.


Assuntos
DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , DNA/metabolismo , DNA/genética , Animais , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Camundongos
10.
Methods Mol Biol ; 2854: 61-74, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192119

RESUMO

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Imunidade Inata , Camundongos Knockout , RNA Guia de Sistemas CRISPR-Cas , Animais , Imunidade Inata/genética , Camundongos , RNA Guia de Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Viroses/imunologia , Viroses/genética
11.
Methods Mol Biol ; 2854: 127-141, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192125

RESUMO

Luciferase reporter systems are commonly used in scientific research to investigate a variety of biological processes, including antiviral innate immunity. These systems employ the use of luciferase enzymes derived from organisms such as fireflies or renilla reniformis, which emit light upon reaction with a substrate. In the context of antiviral innate immunity, the luciferase reporter systems offer a noninvasive and highly sensitive approach for real-time monitoring of immune responses in vitro and in vivo, enabling researchers to delve into the intricate interactions and signaling pathways involved in host-virus dynamic interactions. Here, we describe the methods of the promoter-luciferase reporter and enhancer-luciferase reporter, which provide insights into the transcriptional and post-transcriptional regulation of antiviral innate immunity. Additionally, we outline the split-luciferase complementary reporter method, which was designed to explore protein-protein interactions associated with antiviral immunity. These methodologies offer invaluable knowledge regarding the molecular mechanisms underlying antiviral immune pathways and have the potential to support the development of effective antiviral therapies.


Assuntos
Genes Reporter , Imunidade Inata , Luciferases , Humanos , Luciferases/metabolismo , Luciferases/genética , Animais , Interferons/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas , Antivirais/farmacologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética
12.
Methods Mol Biol ; 2854: 107-115, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192123

RESUMO

The innate immune system plays a pivotal role in pathogen recognition and the initiation of innate immune responses through its Pathogen Recognition Receptors (PRRs), which detect Pathogen-Associated Molecular Patterns (PAMPs). Nucleic acids, including RNA and DNA, are recognized as particularly significant PAMPs, especially in the context of viral pathogens. During RNA virus infections, specific sequences in the viral RNA mark it as non-self, enabling host recognition through interactions with RNA sensors, thereby triggering innate immunity. Given that some of the most lethal viruses are RNA viruses, they pose a severe threat to human and animal health. Therefore, understanding the immunobiology of RNA PRRs is crucial for controlling pathogen infections, particularly RNA virus infections. In this chapter, we will introduce a "pull-down" method for identifying RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensors.


Assuntos
Imunidade Inata , RNA Viral , Receptores de Reconhecimento de Padrão , Humanos , RNA Viral/genética , RNA Viral/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Animais , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/genética , Vírus de RNA/imunologia , Vírus de RNA/genética , Interações Hospedeiro-Patógeno/imunologia , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia
13.
Methods Mol Biol ; 2854: 177-188, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192129

RESUMO

Cryo-electron microscopy is a powerful methodology in structural biology and has been broadly used in high-resolution structure determination for challenging samples, which are not readily available for traditional techniques. In particular, the strength of super macro-complexes and the lack of a need for crystals for cryo-EM make this technique feasible for the structural study of complexes involved in antiviral innate immunity. This chapter presents detailed information and experimental procedures of Cryo-EM for determining the structures of the complexes using STING as an example. The procedures included a sample quality check, high-resolution data acquisition, and image processing for Cryo-EM 3D structure determination.


Assuntos
Microscopia Crioeletrônica , Imunidade Inata , Microscopia Crioeletrônica/métodos , Humanos , Proteínas de Membrana/imunologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
14.
Methods Mol Biol ; 2854: 143-151, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192126

RESUMO

Protein lysine acetylation involved in the antiviral innate immunity contributes to the regulation of antiviral inflammation responses, including type 1 interferon production and interferon-stimulated gene expression. Thus, investigation of acetylated antiviral proteins is vital for the complete understanding of inflammatory responses to viral infections. Immunoprecipitation (IP) assay with anti-targeted-protein antibody or with acetyl-lysine affinity beads followed by immunoblot provides a classical way to determine the potential modified protein in the antiviral innate pathways, whereas mass spectrometry can be utilized to identify the accurate acetylation lysine residues or explore the acetyl-proteomics. We demonstrate here comprehensive methods of protein lysine acetylation determination in virus-infected macrophages and embryonic fibroblast cells or proteins-overexpressed HEK 293 T cells in the context of antiviral innate immunity.


Assuntos
Imunidade Inata , Lisina , Humanos , Acetilação , Lisina/metabolismo , Células HEK293 , Imunoprecipitação/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Animais , Espectrometria de Massas/métodos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/imunologia , Fibroblastos/virologia
15.
Methods Mol Biol ; 2854: 199-212, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192131

RESUMO

Antiviral innate immunity plays a critical role in the defense against viral infections, yet its complex interactions with viruses have been challenging to study using traditional models. Organoids, three-dimensional (3D) tissue-like structures derived from stem cells, have emerged as powerful tools for modeling human tissues and studying the complex interactions between viruses and the host innate immune system. This chapter summarizes relevant applications of organoids in antiviral innate immunity studies and provides detailed information and experimental procedures for using organoids to study antiviral innate immunity.


Assuntos
Imunidade Inata , Organoides , Viroses , Organoides/imunologia , Organoides/virologia , Humanos , Viroses/imunologia , Viroses/virologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Vírus/imunologia
16.
Methods Mol Biol ; 2854: 171-175, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192128

RESUMO

Phagocytosis is a central process by which macrophage cells internalize and eliminate microbes as well as apoptotic cells. The nascent phagosome undergoes a complex maturation process involving sequential fusion with endosomal compartments. The endosomal TLRs, including TLR3, -7, -8, and -9, play a critical role in innate immunity by sensing bacterial or viral nucleic acids and are preferentially transported to the phagosomal membrane of innate immune cells upon activation. Therefore, phagosome isolation is helpful for studies on pathogenic invasion and the functions of phagosome proteins, including endosomal TLRs.


Assuntos
Fagossomos , Receptores Toll-Like , Fagossomos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Fagocitose , Camundongos , Humanos , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/imunologia
17.
Methods Mol Biol ; 2854: 221-236, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192133

RESUMO

Zebrafish is a widely used model organism in genetics, developmental biology, pathology, and immunology research. Due to their fast reproduction, large numbers, transparent early embryos, and high genetic conservation with the human genome, zebrafish have been used as a model for studying human and fish viral diseases. In particular, the ability to easily perform forward and reverse genetics and lacking a functional adaptive immune response during the early period of development establish the zebrafish as a favored option to assess the functional implication of specific genes in the antiviral innate immune response and the pathogenesis of viral diseases. In this chapter, we detail protocols for the antiviral innate immunity analysis using the zebrafish model, including the generation of gene-overexpression zebrafish, generation of gene-knockout zebrafish by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, methods of viral infection in zebrafish larvae, analyzing the expression of antiviral genes in zebrafish larvae using qRT-PCR, Western blotting and transcriptome sequencing, and in vivo antiviral assays. These experimental protocols provide effective references for studying the antiviral immune response in the zebrafish model.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Imunidade Inata , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Peixe-Zebra/genética , Peixe-Zebra/virologia , Imunidade Inata/genética , Viroses/imunologia , Viroses/genética , Técnicas de Inativação de Genes , Animais Geneticamente Modificados
18.
Methods Mol Biol ; 2854: 189-197, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192130

RESUMO

This chapter summarizes the epidemiological study design of natural immune epidemiology studies based on recent COVID-19-related research. The epidemiological studies on antiviral innate immunity have mainly included randomized controlled trials (RCTs) and observational studies. Importantly, this chapter will discuss how to use these methodologies to answer an epidemiological question of natural immunity in the viral infection process based on previous studies. An observational case- or cohort-based study of antiviral innate immunity may support this theoretical hypothesis but is not appropriate for clinical practice or treatment. RCTs are the gold standard for epidemiological studies and occupy a greater role in the hierarchy of evidence.


Assuntos
COVID-19 , Imunidade Inata , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Epidemiológicos , Antivirais/uso terapêutico , Estudos Observacionais como Assunto
19.
Methods Mol Biol ; 2854: 237-251, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192134

RESUMO

The innate immune system is the first line of host defense against infection by pathogenic microorganisms, among which macrophages are important innate immune cells. Macrophages are widely distributed throughout the body and recognize and eliminate viruses through pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs). In the present chapter, we provide detailed protocols for vesicular stomatitis virus (VSV) amplification, VSV titer detection, isolation of mouse primary peritoneal macrophages, in vitro and in vivo VSV infection, detection of interferon-beta (IFN-ß) expression, and lung injury. These protocols provide efficient and typical methods to evaluate virus-induced innate immunity in vitro and in vivo.


Assuntos
Imunidade Inata , Interferon beta , Macrófagos Peritoneais , Vesiculovirus , Animais , Camundongos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/virologia , Macrófagos Peritoneais/metabolismo , Interferon beta/imunologia , Interferon beta/metabolismo , Interferon beta/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Estomatite Vesicular/imunologia , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia
20.
Methods Mol Biol ; 2854: 213-220, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192132

RESUMO

Yeast two-hybrid (YTH) technology is a powerful tool for studying protein interactions and has been widely used in various fields of molecular biology, including the study of antiviral innate immunity. This chapter presents detailed information and experimental procedures for identifying virus-host protein interactions involved in immune regulation using yeast two-hybrid technology.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Técnicas do Sistema de Duplo-Híbrido , Humanos , Interações Hospedeiro-Patógeno/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/genética , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA