Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.746
Filtrar
1.
Methods Mol Biol ; 2843: 95-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141296

RESUMO

Bacterial extracellular vesicles (BEVs) are released from the surface of bacterial cells and contain a diverse molecular cargo. Studies conducted primarily with bacterial pathogens of mammals have shown that BEVs are involved in multiple processes such as cell-cell communication, the delivery of RNA, DNA, and proteins to target cells, protection from stresses, manipulation of host immunity, and other functions. Until a decade ago, the roles of BEVs in plant-bacteria interactions were barely investigated. However, recent studies have shown that BEVs of plant pathogens possess similar functions as their mammalian pathogen counterparts, and more research is now devoted to study their roles and interactions with plants. In the following methods chapter, we provide five well-validated assays to examine the interaction of BEVs with the plant immune system. These assays rely on different markers or immune outputs, which indicate the activation of plant immunity (defense marker gene expression, reactive oxygen species burst, seedling inhibition). Furthermore, we offer assays that directly evaluate the priming of the immune system following BEV challenge and the effectiveness of its response to subsequent local or systemic infection. Altogether, these assays provide a thorough examination to the interactions of BEVs and the plant immune system.


Assuntos
Vesículas Extracelulares , Imunidade Vegetal , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Espécies Reativas de Oxigênio/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Plantas/imunologia , Plantas/microbiologia , Plantas/metabolismo
2.
Sci Rep ; 14(1): 18052, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103395

RESUMO

The novelty of this study lies in demonstrating a new approach to control wilt diseases using Jania ethyl acetate extract. In the current investigation, the potential impacts of Jania sp. ethyl acetate extract (JE) on Tomato Fusarium oxysporum wilt (FOW) have been studied. The in vitro antifungal potential of JE against F. oxysporum (FO) was examined. GC-MS investigation of the JE revealed that, the compounds possessing fungicidal action were Phenol,2-methoxy-4-(2-propenyl)-,acetate, Eugenol, Caryophyllene oxide, Isoespintanol, Cadinene, Caryophylla-4(12),8(13)-dien-5à-ol and Copaen. Jania sp. ethyl acetate extract exhibited strong antifungal potential against FO, achieving a 20 mmzone of inhibition. In the experiment, two different methods were applied: soil irrigation (SI) and foliar application (FS) of JE. The results showed that both treatments reduced disease index present DIP by 20.83% and 33.33% respectively. The findings indicated that during FOW, proline, phenolics, and the antioxidant enzymes activity increased, while growth and photosynthetic pigments decreased. The morphological features, photosynthetic pigments, total phenol content, and antioxidant enzyme activity of infected plants improved when JE was applied through soil or foliar methods. It is interesting to note that the application of JE had a substantially less negative effect on the isozymes peroxidase and polyphenol oxidase in tomato plants, compared to FOW. These reactions differed depending on whether JE was applied foliarly or via the soil. Finally, the use of Jania sp. could be utilized commercially as an ecologically acceptable method to protect tomato plants against FOW.


Assuntos
Fusarium , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Alga Marinha , Imunidade Vegetal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rodófitas , Antifúngicos/farmacologia
3.
J Agric Food Chem ; 72(33): 18507-18519, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39113497

RESUMO

Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.


Assuntos
Botrytis , Genômica , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Peptídeos/imunologia , Peptídeos/química , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Capsicum/imunologia , Capsicum/genética , Capsicum/microbiologia , Capsicum/química
4.
Proc Natl Acad Sci U S A ; 121(33): e2411100121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116132

RESUMO

Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.


Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reconhecimento da Imunidade Inata
5.
Nat Commun ; 15(1): 7048, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147739

RESUMO

Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reconhecimento da Imunidade Inata , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Reconhecimento da Imunidade Inata/genética , Metabolômica , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/imunologia , Prolina/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais , Virulência
6.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126086

RESUMO

Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens but there are currently no reports on their role in the interaction between Nicotiana benthamiana and the tobacco mosaic virus (TMV). In this study, the exogenous application of SLs weakened the resistance of N. benthamiana to TMV, promoting TMV infection, whereas the exogenous application of Tis108, a SL inhibitor, resulted in the opposite effect. Virus-induced gene silencing (VIGS) inhibition of two key SL synthesis enzyme genes, NtCCD7 and NtCCD8, enhanced the resistance of N. benthamiana to TMV. Additionally, we conducted a screening of N. benthamiana related to TMV infection. TMV-infected plants treated with SLs were compared to the control by using RNA-seq. The KEGG enrichment analysis and weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) suggested that plant hormone signaling transduction may play a significant role in the SL-TMV-N. benthamiana interactions. This study reveals new functions of SLs in regulating plant immunity and provides a reference for controlling TMV diseases in production.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Lactonas , Nicotiana , Doenças das Plantas , Vírus do Mosaico do Tabaco , Nicotiana/virologia , Nicotiana/genética , Nicotiana/imunologia , Vírus do Mosaico do Tabaco/fisiologia , Lactonas/farmacologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal/genética , Imunidade Vegetal/efeitos dos fármacos , Inativação Gênica
7.
Nat Commun ; 15(1): 6905, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134523

RESUMO

Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Fotossíntese , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases , Ubiquitinação , Cloroplastos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Proteólise , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Imunidade Vegetal/genética , Nicotiana/metabolismo , Nicotiana/genética
8.
Plant Sci ; 347: 112194, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39009307

RESUMO

Revealing the effector-host molecular interactions is crucial for understanding the host immunity against Plasmopara viticola and devising innovative disease management strategies. As a pathogenic oomycete causing grapevine downy mildew, Plasmopara viticola employs various effectors to manipulate the defense systems of host plants. One of these P. viticola derived effectors is necrosis- and ethylene-inducing peptide 1 (Nep1) -like protein (PvNLP7), which has been known to elicit cell death and immune responses in plants. However, the underlying molecular mechanisms remain obscure, prompting the focus of this study. Through yeast two-hybrid screening, we have identified the Vitis rotundifolia ADP-ribosylation factor (VrARF1) as a host interactor of PvNLP7. This interaction is corroborated through bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Heterologous expression of VrARF1 in Nicotiana benthamiana verifies its accumulation in both the cytoplasm and nucleus, and induction of cell death. Moreover, the VrARF1 gene is strongly induced during early P. viticola infection and upon PvNLP7 transient expression. Overexpression of the VrARF1 gene in grapevine and N. benthamiana enhances resistance to P. viticola and Phytophthora capsici, respectively, via induction of defense related genes PR1 and PR2. Conversely, virus-induced gene silencing (VIGS) of NbARF1 in N. benthamiana, homologous to VrARF1, markedly attenuates PvNLP7-triggered cell death and reduces the expression of four PTI marker genes (PTI5, Acre31, WRKY7 and Cyp71D20) and two defense related genes (PR1 and PR2), rendering plants transiently transformed with PvNLP7 more susceptible to oomycete P. capsici. These findings highlight the role of ARF1 in mediating PvNLP7-induced immunity and indicate its potential as a target for engineering disease-resistant transgenic plants against oomycete pathogens.


Assuntos
Fator 1 de Ribosilação do ADP , Nicotiana , Oomicetos , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Vitis , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/metabolismo , Oomicetos/fisiologia , Vitis/genética , Vitis/microbiologia , Vitis/metabolismo , Vitis/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno
9.
Annu Rev Plant Biol ; 75(1): 655-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038248

RESUMO

Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Vírus de Plantas , Plantas , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/imunologia , Vírus de Plantas/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Plantas/virologia , Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune
10.
Annu Rev Plant Biol ; 75(1): 551-577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038249

RESUMO

Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.


Assuntos
Imunidade Vegetal , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
11.
Nat Commun ; 15(1): 6336, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068146

RESUMO

Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.


Assuntos
Arabidopsis , Phytophthora , Doenças das Plantas , Imunidade Vegetal , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Salicílico/metabolismo , Oomicetos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Elife ; 122024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028038

RESUMO

Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/química , Regulação Alostérica , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Fosforilação , Imunidade Vegetal , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/química
13.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000408

RESUMO

Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.


Assuntos
Proteínas NLR , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas NLR/metabolismo , Proteínas NLR/genética , Proteínas NLR/química , Morte Celular , Mutação , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Domínios Proteicos , Resistência à Doença/genética , Imunidade Vegetal/genética
14.
Elife ; 122024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046447

RESUMO

The Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2), a typical receptor kinase, recognizes the conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways, which was intensively studied in the past decades. However, the dynamic regulation of FLS2 phosphorylation at the plasma membrane after flg22 recognition needs further elucidation. Through single-particle tracking, we demonstrated that upon flg22 treatment the phosphorylation of Ser-938 in FLS2 impacts its spatiotemporal dynamics and lifetime. Following Förster resonance energy transfer-fluorescence lifetime imaging microscopy and protein proximity indexes assays revealed that flg22 treatment increased the co-localization of GFP-tagged FLS2/FLS2S938D but not FLS2S938A with AtRem1.3-mCherry, a sterol-rich lipid marker, indicating that the phosphorylation of FLS2S938 affects FLS2 sorting efficiency to AtRem1.3-associated nanodomains. Importantly, we found that the phosphorylation of Ser-938 enhanced flg22-induced FLS2 internalization and immune responses, demonstrating that the phosphorylation may activate flg22-triggered immunity through partitioning FLS2 into functional AtRem1.3-associated nanodomains, which fills the gap between the FLS2S938 phosphorylation and FLS2-mediated immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flagelina , Proteínas Quinases , Imagem Individual de Molécula , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Flagelina/metabolismo , Flagelina/farmacologia , Imunidade Vegetal , Transferência Ressonante de Energia de Fluorescência , Membrana Celular/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000361

RESUMO

Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Plantas , Transdução de Sinais , Plantas/metabolismo , Plantas/imunologia , Plantas/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Lipídeos , Ciclopentanos/metabolismo
16.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955187

RESUMO

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autoimunidade , Resistência à Doença , Fusarium , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fusarium/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Proteínas de Transporte
17.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética
18.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968126

RESUMO

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Assuntos
Proteínas Fúngicas , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Resistência à Doença/imunologia , Imunidade Vegetal , Bioengenharia/métodos , Magnaporthe/imunologia , Magnaporthe/genética , Magnaporthe/metabolismo , Ligação Proteica , Receptores Imunológicos/metabolismo , Ascomicetos
19.
Physiol Plant ; 176(4): e14436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019771

RESUMO

Small secreted peptides (SSPs), serving as signaling molecules for intercellular communication, play significant regulatory roles in plant growth, development, pathogen immunity, and responses to abiotic stress. Despite several SSPs, such as PIP, PSK, and PSY having been identified to participate in plant immunity, the majority of SSPs remain understudied, necessitating the exploration and identification of SSPs regulating plant immunity from vast genomic resources. Here we systematically characterized 756 putative SSPs across the genome of Nicotiana tabacum. 173 SSPs were further annotated as established SSPs, such as nsLTP, CAPE, and CEP. Furthermore, we detected the expression of 484 putative SSP genes in five tissues, with 83 SSPs displaying tissue-specific expression. Transcriptomic analysis of tobacco roots under plant defense hormones revealed that 46 SSPs exhibited specific responsiveness to salicylic acid (SA), and such response was antagonistically regulated by methyl jasmonate. It's worth noting that among these 46 SSPs, 16 members belong to nsLTP family, and one of them, NtLTP25, was discovered to enhance tobacco's resistance against Phytophthora nicotianae. Overexpression of NtLTP25 in tobacco enhanced the expression of ICS1, subsequently stimulating the biosynthesis of SA and the expression of NPR1 and pathogenesis-related genes. Concurrently, NtLTP25 overexpression activated genes associated with ROS scavenging, consequently mitigating the accumulation of ROS during the subsequent phases of pathogenesis. These discoveries indicate that these 46 SSPs, especially the 16 nsLTPs, might have a vital role in governing plant immunity that relies on SA signaling. This offers a valuable source for pinpointing SSPs involved in regulating plant immunity.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genoma de Planta/genética , Peptídeos/metabolismo , Peptídeos/genética , Phytophthora/fisiologia , Phytophthora/patogenicidade , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Perfilação da Expressão Gênica
20.
Plant Sci ; 347: 112200, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038707

RESUMO

Receptor-like kinases (RLKs) constitute a diverse superfamily of proteins pivotal for various plant physiological processes, including responses to pathogens, hormone perception, growth, and development. Their ability to recognize conserved epitopes for general elicitors and specific pathogens marked significant advancements in plant pathology research. Emerging evidence suggests that RLKs and associated components also act as modulators in hormone signaling and cellular trafficking, showcasing their multifunctional roles in growth and development. Notably, STRESS INDUCED FACTOR 2 (SIF2) stands out as a representative with distinct expression patterns in different Arabidopsis organs. Our prior work highlighted the specific induction of SIF2 expression in guard cells, emphasizing its positive contribution to stomatal immunity. Expanding on these findings, our present study delves into the diverse functions of SIF2 expression in root tissues. Utilizing comprehensive physiology, molecular biology, protein biochemistry, and genetic analyses, we reveal that SIF2 modulates abscisic acid (ABA) signaling in Arabidopsis roots. SIF2 is epistatic with key regulators in the ABA signaling pathway, thereby governing the expression of genes crucial for dormancy release and, consequently, Arabidopsis seed germination. This study sheds light on the intricate roles of SIF2 as a multi-functional RLK, underscoring its organ-specific contributions to plant immunity, hormonal regulation, and seed germination.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Germinação , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Germinação/genética , Ácido Abscísico/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Sementes/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Imunidade Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA