Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.794
Filtrar
2.
Int J Rheum Dis ; 27(5): e15182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742463

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a form of immunotherapy where the lymphocytes, mostly T-cells, are redirected to specifically recognize and eliminate a target antigen by coupling them with CARs. The binding of CAR and target cell surface antigens leads to vigorous T cell activation and robust anti-tumor immune responses. Areas of implication of CAR T-cell therapies include mainly hematological malignancies (i.e., advanced B-cell cancers); however, recent studies have proven the unprecedented success of the new immunotherapy also in autoimmune rheumatic diseases. We aim to review the recent advances in CAR T-cell therapies in rheumatology but also to address the limitations of their use in the real clinical practice based on the data on their efficacy and safety.


Assuntos
Doenças Autoimunes , Neoplasias Hematológicas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Doenças Reumáticas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Doenças Reumáticas/imunologia , Doenças Reumáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Resultado do Tratamento , Linfócitos T/imunologia , Animais
3.
Med Sci (Paris) ; 40(5): 445-453, 2024 May.
Artigo em Francês | MEDLINE | ID: mdl-38819280

RESUMO

The immune system plays a critical role in the control and eradication of tumors. A better understanding of the anti-tumor immune mechanisms over the last decade has led to the development of immunotherapies, including cellular therapies such as those using CAR-T cells. These therapies have been remarkably effective in hematological malignancies. However, their application to solid tumors requires some optimization. Many efforts are being made in this regard, both to increase the efficacy of CAR-T cells, and to make them more secure. For the former goal, there is a need for the identification of new targets, better activation strategies, or arming T cells in a way that makes them able to overcome intra-tumoral barriers. For the latter goal, dose adjustment, locoregional administration or use of suicide genes are currently investigated as ways to mitigate the risks of this therapy. Together, these adjustments will permit larger applicability of CAR-T cells, in anti-tumor immunity, but also in the context of auto-immune diseases or fibrolytic therapies.


Title: Optimisation de l'efficacité et de la sécurité d'utilisation des lymphocytes CAR-T. Abstract: Le système immunitaire joue un rôle déterminant dans le contrôle et l'éradication des tumeurs. Une meilleure compréhension des mécanismes en jeu a permis le développement des immunothérapies, et notamment des thérapies par lymphocytes CAR-T. Ces thérapies ont montré une grande efficacité dans les maladies hématologiques, mais leur application aux tumeurs solides nécessite des optimisations pour améliorer leur efficacité et leur sécurité. Ces ajustements permettront une plus grande applicabilité des lymphocytes CAR-T, non seulement pour les traitements anti-tumoraux mais aussi pour le traitement de maladies auto-immunes ou fibreuses.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Monitorização Imunológica/métodos , Linfócitos T/imunologia , Resultado do Tratamento , Animais
4.
J Immunother Cancer ; 12(5)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802271

RESUMO

BACKGROUND: Relapsed/refractory (R/R) central nervous system lymphomas (CNSLs) are associated with a poor prognosis. Relmacabtagene autoleucel (relma-cel), expressing the same chimeric antigen receptor (CAR) as lisocabtagene maraleucel, with an optimized commercial-ready process developed in China, demonstrated remarkable efficacy and manageable safety in the pivotal RELIANCE study. However, no published data are available on the "real-world" use of relma-cel, especially for patients with CNS involvement. PATIENTS AND METHODS: Retrospective analyses were conducted for commercial relma-cel used in patients with R/R CNSL at 12 clinics. The primary endpoint was to evaluate the proportion of patients who achieved complete response (CR) at 3 months. Secondary endpoints included best complete response (BCR), progression-free survival (PFS), duration of response (DOR), overall survival (OS), and the incidence of adverse events. RESULTS: Among the 22 CNSL patients (12 primary CNSLs; 10 secondary CNSLs), the best overall response rate was 90.9% and the BCR rate was 68.2%. With median follow-up of 316 days (range, 55-618 days), the estimated 1-year PFS rate, DOR, and OS rate were 64.4%, 71.5%, and 79.2%, respectively. Significant clinical benefits were observed in patients who were in durable CR or partial response to the most recent prior therapy preleukapheresis and received relma-cel as consolidation therapy (n=8), with 1-year PFS rate of 100.0% versus 41.7% (p=0.02). In addition, in terms of primary endpoint, non-CR at 3 months postinfusion seemed to be predictive of a worse prognosis, with an estimated 1-year PFS of 83.3% versus 37.0% (p=0.03), respectively. CRS occurred in 72.9% of patients (grade 3: 4.5%) and immune effector cell-associated neurotoxicity syndrome in 36.4% of patients (grade 3: 4.5%). With the add-on agent PD-1 inhibitor (tislelizumab) to the ongoing BTKi, significant re-expansions of CAR T-cell were detected by quantitative PCR or flow cytometry after a median of 2 weeks (range, 12-32 days). CONCLUSIONS: This study was the first and largest real-world study of commercial relma-cel for R/R CNSL, demonstrating promising efficacy and acceptable safety. We reaffirmed the benefit of immuno-agents such as BTKi or PD-1 inhibitor on CAR T-cell re-expansion and hypothesized a dual-agent CAR-T related combinatorial therapies, which warrants further validation. Most importantly, we highlighted the earlier use of CAR T-cell therapy as a consolidative therapy for patients sensitive to salvage therapy, which provided an impetus and inspired-future strategy.


Assuntos
Neoplasias do Sistema Nervoso Central , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/terapia , China , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Linfoma/terapia , Linfoma/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico , Estudos Retrospectivos
5.
BMJ ; 385: e075859, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749554

RESUMO

In addition to conventional chemoradiation and targeted cancer therapy, the use of immune based therapies, specifically immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T cell therapy (CAR-T), has increased exponentially across a wide spectrum of cancers. This has been paralleled by recognition of off-target immune related adverse events that can affect almost any organ system including the cardiovascular system. The use of ICIs has been associated with myocarditis, a less common but highly fatal adverse effect, pericarditis and pericardial effusions, vasculitis, thromboembolism, and potentially accelerated atherosclerosis. CAR-T resulting in a systemic cytokine release syndrome has been associated with myriad cardiovascular consequences including arrhythmias, myocardial infarction, and heart failure. This review summarizes the current state of knowledge regarding adverse cardiovascular effects associated with ICIs and CAR-T.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Doenças Cardiovasculares/induzido quimicamente , Cardiotoxicidade/etiologia , Miocardite/induzido quimicamente , Miocardite/terapia , Síndrome da Liberação de Citocina/etiologia , Pericardite/induzido quimicamente , Pericardite/terapia
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732213

RESUMO

Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable, and its incidence is rising. Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a novel treatment, with the potential to improve the survival and quality of life of patients with relapsed/refractory multiple myeloma (rrMM). In this systematic review and meta-analysis, conducted in accordance with PRISMA guidelines, we aim to provide a concise overview of the latest developments in CAR-T therapy, assess their potential implications for clinical practice, and evaluate their efficacy and safety outcomes based on the most up-to-date evidence. A literature search conducted from 1 January 2019 to 12 July 2023 on Medline/PubMed, Scopus, and Web of Science identified 2273 articles, of which 29 fulfilled the specified criteria for inclusion. Our results offer robust evidence supporting CAR-T cell therapy's efficacy in rrMM patients, with an encouraging 83.21% overall response rate (ORR). A generally safe profile was observed, with grade ≥ 3 cytokine release syndrome (CRS) at 7.12% and grade ≥ 3 neurotoxicity at 1.37%. A subgroup analysis revealed a significantly increased ORR in patients with fewer antimyeloma regimens, while grade ≥ 3 CRS was more common in those with a higher proportion of high-risk cytogenetics and prior exposure to BCMA therapy.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Qualidade de Vida , Recidiva Local de Neoplasia/terapia , Síndrome da Liberação de Citocina/etiologia
9.
Front Immunol ; 15: 1381308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745670

RESUMO

Chimeric antigen receptor T cells (CAR T) targeting CD7 for T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) showed promising efficacy and safety in some clinical trials. However, most of them were bridged with allogeneic hematopoietic stem cell transplantation (allo-HSCT). We described successful treatment with preventive donor-derived anti-CD7 CAR-T therapy in a case of refractory T lymphoblastic lymphoma following allo-HSCT, who could not receive autologous anti-CD7 CAR-T products due to the low-quality of T lymphocytes. To date, the patient's complete remission has persisted for 20 months after HSCT.


Assuntos
Antígenos CD7 , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Antígenos CD7/imunologia , Receptores de Antígenos Quiméricos/imunologia , Masculino , Doadores de Tecidos , Linfócitos T/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Resultado do Tratamento , Adulto
10.
Dtsch Med Wochenschr ; 149(11): 630-637, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38749439

RESUMO

The introduction of immunologically targeted therapies has represented a significant advancement in the treatment of B-cell lymphomas, particularly aggressive B-cell lymphoma. CD19 CAR-T cells such as Axicabtagen-Ciloleucel (Axi-cel) and Lisocabtagen Maraleucel (Liso-cel) have been approved since 2022 and 2023, respectively, for second-line therapy of Diffuse Large B-Cell Lymphomas (DLBCL), when there is primary refractory disease or relapse within 12 months after the end of first-line therapy. These therapies result in a significant improvement in progression-free survival compared to the previous standard therapy (salvage chemotherapy followed by high-dose chemotherapy and autologous stem cell transplantation). Especially in elderly patients or patients with underlying medical conditions, CAR-T cell therapies like Axi-cel and Liso-cel demonstrate acceptable tolerability and high efficacy.Furthermore, bispecific T-cell-engaging antibodies ("bispecifics") such as Glofitamab, Epcoritamab, and Mosunetuzumab also represent promising treatment options for patients with relapsed disease after failure of second- or later line therapy and show efficacy even in a subset of patients relapsing after CD19 CAR-T cells. However, randomized study results for these substances are not yet available. They are expected to be used in earlier lines of therapy in the future, especially in combination with standard chemotherapy regimens. Common side effects of bispecific antibody therapies are cytokine release syndrome (CRS) and immune-mediated cytopenias, whereas immune-cell associated neurotoxicity syndrome (ICANS) is relatively rare compared to CD19 CAR T cells. In summary, bispecifics represent a novel, highly effective immunotherapy for the treatment of lymphomas with a very favourable toxicity profile.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Linfócitos T/imunologia , Imunoterapia/métodos , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Anticorpos Biespecíficos/uso terapêutico , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/imunologia , Antígenos CD19/imunologia
12.
Front Immunol ; 15: 1409021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751430

RESUMO

Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in treating hematological malignancies. However, the widespread adoption of CAR-T cell therapy is hindered by several challenges. These include concerns about the long-term and complex manufacturing process, as well as efficacy factors such as tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor microenvironment. Additionally, safety issues like the risk of secondary cancers post-treatment, on-target off-tumor toxicity, and immune effector responses triggered by CAR-T cells are significant considerations. To address these obstacles, researchers have explored various strategies, including allogeneic universal CAR-T cell development, infusion of non-activated quiescent T cells within a 24-hour period, and in vivo induction of CAR-T cells. This review comprehensively examines the clinical challenges of CAR-T cell therapy and outlines strategies to overcome them, aiming to chart pathways beyond its current Achilles heels.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Antígenos de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
13.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754916

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapies specific for the CD19 and B-cell maturation antigen have become an approved standard of care worldwide for relapsed and refractory B-cell malignancies. If CAR-T cell therapy for non-hematological malignancies is to achieve the same stage of clinical development, then iterative early-phase clinical testing can add value to the clinical development process for evaluating CAR-T cell products containing different CAR designs and manufactured under differing conditions. METHODS: We conducted a phase 1 trial of third-generation GD2-specific CAR-T cell therapy, which has previously been tested in neuroblastoma patients. In this study, the GD2-CAR-T therapy was evaluated for the first time in metastatic melanoma patients in combination with BRAF/MEK inhibitor therapy, and as a monotherapy in patients with colorectal cancer and a patient with fibromyxoid sarcoma. Feasibility and safety were determined and persistence studies, multiplex cytokine arrays on sera and detailed immune phenotyping of the original CAR-T products, the circulating CAR-T cells, and, in select patients, the tumor-infiltrating CAR-T cells were performed. RESULTS: We demonstrate the feasibility of manufacturing CAR-T products at point of care for patients with solid cancer and show that a single intravenous infusion was well tolerated with no dose-limiting toxicities or severe adverse events. In addition, we note significant improvements in CAR-T cell immune phenotype, and expansion when a modified manufacturing procedure was adopted for the latter 6 patients recruited to this 12-patient trial. We also show evidence of CAR-T cell-mediated immune activity and in some patients expanded subsets of circulating myeloid cells after CAR-T cell therapy. CONCLUSIONS: This is the first report of third-generation GD2-targeting CAR-T cells in patients with metastatic melanoma and other solid cancers such as colorectal cancer, showing feasibility, safety and immune activity, but limited clinical effect. TRIAL REGISTRATION NUMBER: ACTRN12613000198729.


Assuntos
Imunoterapia Adotiva , Melanoma , Receptores de Antígenos Quiméricos , Humanos , Melanoma/imunologia , Melanoma/terapia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Gangliosídeos/imunologia , Adulto , Idoso , Linfócitos T/imunologia , Resultado do Tratamento
14.
Front Immunol ; 15: 1412002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779668

RESUMO

Chimeric Antigen Receptor T-cell (CAR-T) therapy has transformed the treatment landscape for hematological malignancies, showing high efficacy in patients with relapsed or refractory (R/R) disease and otherwise poor prognosis in the pre-CAR-T era. These therapies have been usually administered in the inpatient setting due to the risk of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). However, there is a growing interest in the transition to outpatient administration due to multiple reasons. We review available evidence regarding safety and feasibility of outpatient administration of CD19 targeted and BCMA targeted CAR T-cell therapy with an emphasis on the implementation of outpatient CAR-T programs in community-based centers.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Pacientes Ambulatoriais , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Assistência Ambulatorial , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/etiologia , Antígenos CD19/imunologia , Centros Comunitários de Saúde
15.
Lancet Haematol ; 11(6): e459-e470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734026

RESUMO

Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Linfócitos T/imunologia , Doenças Hematológicas/terapia , Doenças Hematológicas/etiologia
16.
Ann Med ; 56(1): 2349796, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738799

RESUMO

BACKGROUND: Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS: The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS: Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION: Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Antígenos CD19/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Receptores de Antígenos Quiméricos/imunologia , Criança , Resultado do Tratamento , Neoplasia Residual , Síndrome da Liberação de Citocina/etiologia , Recidiva , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia
17.
Clin Chim Acta ; 559: 119704, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697457

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, significant toxicities may also be associated with such therapy. Here we report extremely high ferritin in a male patient after such therapy. CASE PRESENTATION: We present a case of a 52 year old male with a history of B-cell acute lymphoblastic leukemia who received chimeric antigen receptor T-cell (CAR-T) therapy with rapcabtagene autoleucel (carvykti). The patient subsequently developed cytokine release syndrome (CRS) which during its resolution results in a hemophagocytic lymphohistiocytosis (HLH)-like syndrome that fell short of being diagnostic. This syndrome tracked closely with the onset and resolution of immune-effector cell-associated neurotoxicity syndrome (ICANS), with close correlation between the severity of laboratory abnormalities, particularly extremely high ferritin (peak value: 81,540 µg/L), and clinical encephalopathy. CONCLUSIONS: Cytokine release syndrome after experimental (CAR) T cell therapy may cause extremely elevated ferritin and hemophagocytic lymphohistiocytosis -like syndrome.


Assuntos
Síndrome da Liberação de Citocina , Ferritinas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Masculino , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Pessoa de Meia-Idade , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Hematológicas/terapia , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/imunologia
18.
Front Immunol ; 15: 1384039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726000

RESUMO

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Animais , Microambiente Tumoral/imunologia , Ensaios Clínicos como Assunto , Antígenos de Neoplasias/imunologia
19.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791398

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Nanotecnologia/métodos , Nanomedicina/métodos , Animais , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia
20.
Front Immunol ; 15: 1389227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803489

RESUMO

Background: Explore the efficacy and safety of donor-derived CLL-1 chimeric antigen receptor T-cell therapy (CAR-T) for relapsed/refractory acute myeloid leukemia (R/R AML) bridging to allogeneic hematopoietic stem cell transplantation (allo-HSCT) after remission. Case presentation: An adult R/R AML patient received an infusion of donor-derived CLL-1 CAR-T cells, and the conditioning regimen bridging to allo-HSCT was started immediately after remission on day 11 after CAR-T therapy upon transplantation. Then, routine post-HSCT monitoring of blood counts, bone marrow (BM) morphology, flow cytometry, graft-versus-host disease (GVHD) manifestations, and chimerism status were performed. Result: After CAR-T therapy, cytokine release syndrome was grade 1. On day 11 after CAR-T therapy, the BM morphology reached complete remission (CR), and the conditioning regimen bridging to allo-HSCT started. Leukocyte engraftment, complete donor chimerism, and platelet engraftment were observed on days +18, +23, and +26 post-allo-HSCT, respectively. The BM morphology showed CR and flow cytometry turned negative on day +23. The patient is currently at 4 months post-allo-HSCT with BM morphology CR, negative flow cytometry, complete donor chimerism, and no extramedullary relapse/GVHD. Conclusion: Donor-derived CLL-1 CAR-T is an effective and safe therapy for R/R AML, and immediate bridging to allo-HSCT after remission may better improve the long-term prognosis of R/R AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Leucemia Mieloide Aguda , Transplante Homólogo , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Masculino , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão , Doença Enxerto-Hospedeiro/etiologia , Pessoa de Meia-Idade , Condicionamento Pré-Transplante/métodos , Adulto , Resultado do Tratamento , Doadores de Tecidos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA