Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Commun Biol ; 7(1): 946, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103539

RESUMO

Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigate dynamical properties of the resting-state electroencephalogram (EEG) of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. Importantly, all participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams), enabling an experimental dissociation between unresponsiveness and unconsciousness. For each condition, we measure (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related metrics, revealing that states of unconsciousness are characterized by a distancing from both avalanche criticality and the edge of chaos. We then ask whether these same dynamical properties are predictive of the perturbational complexity index (PCI), a TMS-based measure that has shown remarkably high sensitivity in detecting consciousness independently of behavior. We successfully predict individual subjects' PCI values with considerably high accuracy from resting-state EEG dynamical properties alone. Our results establish a firm link between perturbational complexity and criticality, and provide further evidence that criticality is a necessary condition for the emergence of consciousness.


Assuntos
Estado de Consciência , Eletroencefalografia , Inconsciência , Humanos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia , Masculino , Adulto , Feminino , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Ketamina/farmacologia , Propofol/farmacologia , Adulto Jovem , Anestesia Geral
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850214

RESUMO

States of consciousness are likely mediated by multiple parallel yet interacting cortico-subcortical recurrent networks. Although the mesocircuit model has implicated the pallidocortical circuit as one such network, this circuit has not been extensively evaluated to identify network-level electrophysiological changes related to loss of consciousness (LOC). We characterize changes in the mesocircuit in awake versus propofol-induced LOC in humans by directly simultaneously recording from sensorimotor cortices (S1/M1) and globus pallidus interna and externa (GPi/GPe) in 12 patients with Parkinson disease undergoing deep brain stimulator implantation. Propofol-induced LOC is associated with increases in local power up to 20 Hz in GPi, 35 Hz in GPe, and 100 Hz in S1/M1. LOC is likewise marked by increased pallidocortical alpha synchrony across all nodes, with increased alpha/low beta Granger causal (GC) flow from GPe to all other nodes. In contrast, LOC is associated with decreased network-wide beta coupling and beta GC from M1 to the rest of the network. Results implicate an important and possibly central role of GPe in mediating LOC-related increases in alpha power, supporting a significant role of the GPe in modulating cortico-subcortical circuits for consciousness. Simultaneous LOC-related suppression of beta synchrony highlights that distinct oscillatory frequencies act independently, conveying unique network activity.


Assuntos
Ritmo alfa , Globo Pálido , Propofol , Inconsciência , Humanos , Propofol/farmacologia , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia , Ritmo alfa/efeitos dos fármacos , Ritmo alfa/fisiologia , Idoso , Doença de Parkinson/fisiopatologia , Estimulação Encefálica Profunda/métodos , Anestésicos Intravenosos/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Eletroencefalografia
3.
Brain Stimul ; 17(3): 687-697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38821397

RESUMO

BACKGROUND: Dopaminergic neurons in the ventral tegmental area (VTA) are crucially involved in regulating arousal, making them a potential target for reversing general anesthesia. Electrical deep brain stimulation (DBS) of the VTA restores consciousness in animals anesthetized with drugs that primarily enhance GABAA receptors. However, it is unknown if VTA DBS restores consciousness in animals anesthetized with drugs that target other receptors. OBJECTIVE: To evaluate the efficacy of VTA DBS in restoring consciousness after exposure to four anesthetics with distinct receptor targets. METHODS: Sixteen adult Sprague-Dawley rats (8 female, 8 male) with bipolar electrodes implanted in the VTA were exposed to dexmedetomidine, fentanyl, ketamine, or sevoflurane to produce loss of righting, a proxy for unconsciousness. After receiving the dopamine D1 receptor antagonist, SCH-23390, or saline (vehicle), DBS was initiated at 30 µA and increased by 10 µA until reaching a maximum of 100 µA. The current that evoked behavioral arousal and restored righting was recorded for each anesthetic and compared across drug (saline/SCH-23390) condition. Electroencephalogram, heart rate and pulse oximetry were recorded continuously. RESULTS: VTA DBS restored righting after sevoflurane, dexmedetomidine, and fentanyl-induced unconsciousness, but not ketamine-induced unconsciousness. D1 receptor antagonism diminished the efficacy of VTA stimulation following sevoflurane and fentanyl, but not dexmedetomidine. CONCLUSIONS: Electrical DBS of the VTA restores consciousness in animals anesthetized with mechanistically distinct drugs, excluding ketamine. The involvement of the D1 receptor in mediating this effect is anesthetic-specific.


Assuntos
Estimulação Encefálica Profunda , Dexmedetomidina , Fentanila , Ratos Sprague-Dawley , Sevoflurano , Inconsciência , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Sevoflurano/farmacologia , Dexmedetomidina/farmacologia , Masculino , Fentanila/farmacologia , Ratos , Feminino , Inconsciência/induzido quimicamente , Inconsciência/terapia , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Ketamina/farmacologia , Anestésicos Inalatórios/farmacologia
4.
Comp Med ; 74(1): 12-18, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38532260

RESUMO

General anesthesia induces a reversible loss of consciousness (LOC), a state that is characterized by the inability to feel pain. Identifying LOC in animals poses unique challenges, because the method most commonly used in humans, responding to questions, cannot be used in animals. For over a century, loss of righting reflex (LORR) has been used to assess LOC in animals. This is the only animal method that correlates directly with LOC in humans and has become the standard proxy measure used in research. However, the reporting of how LORR is assessed varies extensively. This systematic literature review examined the consistency and completeness of LORR methods used in rats and mice. The terms 'righting reflex,' 'anesthesia,' 'conscious,' 'rats,' 'mice,' and their derivatives were used to search 5 electronic databases. The abstracts of the 985 articles identified were screened for indications that the study assessed LORR in mice or rats. Full texts of selected articles were reviewed for LORR methodological completeness, with reported methods categorized by 1) animal placement method, 2) behavioral presence of righting reflex, 3) duration of LORR testing, 4) behavioral LORR, and 5) animal position for testing LORR. Only 22 papers reported on all 5 methodological categories. Of the 22 papers, 21 used unique LORR methodologies, with descriptions of LORR methods differing in at least one category as compared with all other studies. This variability indicates that even papers that included all 5 categories still had substantial differences in their methodological descriptions. These findings reveal substantial inconsistencies in LORR methodology and reporting in the biomedical literature likely compromising study replicability and data interpretation.


Assuntos
Anestesia Geral , Reflexo de Endireitamento , Animais , Camundongos , Reflexo de Endireitamento/efeitos dos fármacos , Ratos , Anestesia Geral/veterinária , Inconsciência/induzido quimicamente , Inconsciência/veterinária
5.
J Am Assoc Lab Anim Sci ; 63(3): 310-315, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325835

RESUMO

Overdose of carbon dioxide gas (CO2) is a common euthanasia method for rodents; however, CO2 exposure activates nociceptors in rats at concentrations equal to or greater than 37% and is reported to be painful in humans at concentrations equal to or greater than 32.5%. Exposure of rats to CO2 could cause pain before loss of consciousness. We used 2 standardized loss of righting reflex (LORR) methods to identify CO2 concentrations associated with unconsciousness in Wistar, Long???Evans, and Sprague???Dawley rats (n = 28 animals per strain). A rotating, motorized cylinder was used to test LORR while the rat was being exposed to increasing concentrations of CO2. LORR was defined based on a 15-second observation period. The 2 methods were 1) a 1-Paw assessment (the righting reflex was considered to be present if one or more paws contacted the cylinder after the rat was positioned in dorsal recumbency), and 2) a 4-Paw assessment (the righting reflex was considered to be present if all 4 paws contacted the cylinder after the rat was positioned in dorsal recumbency). Data were analyzed with Probit regression, and dose-response curves were plotted. 1-Paw EC95 values (CO2 concentration at which LORR occurred for 95% of the population) were Wistar, 27.2%; Long???Evans, 29.2%; and Sprague???Dawley, 35.0%. 4-Paw EC95 values were Wistar, 26.2%; Long???Evans, 25.9%, and Sprague???Dawley, 31.1%. Sprague???Dawley EC95 values were significantly higher in both 1- and 4-Paw tests as compared with Wistar and Long???Evans rats. No differences were detected between sexes for any strain. The 1-Paw EC95 was significantly higher than the 4-Paw EC95 only for Sprague-Dawley rats. These results suggest that a low number of individual rats from the strains studied may experience pain during CO2 euthanasia.


Assuntos
Dióxido de Carbono , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Wistar , Reflexo de Endireitamento , Animais , Ratos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Masculino , Feminino , Inconsciência/induzido quimicamente , Inconsciência/veterinária
6.
Forensic Toxicol ; 42(2): 242-247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334843

RESUMO

PURPOSE: The aim of this study is to examine the clinical and imaging manifestations of methanol toxicity during the COVID-19 pandemic, as well as to review existing studies on this topic. The most common cause of methanol intoxication is methanol-adulterated liquor. The primary metabolite of methanol, formic acid, is responsible for pathological changes. Symptoms typically present within 6-24 h of consumption and can include visual disturbances, acute neurological symptoms, and gastrointestinal issues. During the initial year of the COVID-19 pandemic, methanol poisoning cases increased significantly. METHODS: In this study, We present six different patients with methanol intoxication and their clinical and imaging features. RESULTS: In the literature review, the most common clinical presentation was loss of consciousness and obtundation and the other was vision loss. CT scan findings showed bilateral putaminal necrosis and hemorrhage in 55% of methanol toxicity patients. CONCLUSION: Methanol intoxication, causing bilateral putaminal involvement and a 50% mortality rate in intracerebral hemorrhage patients, warrants urgent toxicological analysis due to potential putaminal hemorrhage.


Assuntos
COVID-19 , Metanol , Tomografia Computadorizada por Raios X , Humanos , Metanol/intoxicação , COVID-19/complicações , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Putaminal/induzido quimicamente , Hemorragia Putaminal/diagnóstico por imagem , Hemorragia Putaminal/patologia , Inconsciência/induzido quimicamente , Idoso
7.
Theranostics ; 14(2): 480-495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169536

RESUMO

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Assuntos
Anestesia , Córtex Motor , Camundongos , Animais , Estado de Consciência/fisiologia , Sevoflurano/efeitos adversos , Células de Purkinje/fisiologia , Cálcio , Inconsciência/induzido quimicamente , Neurônios , Glutamatos/efeitos adversos , Ácido gama-Aminobutírico
8.
Elife ; 132024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180472

RESUMO

Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.


Assuntos
Estado de Consciência , Alucinógenos , Humanos , Ratos , Camundongos , Animais , Córtex Cerebral/fisiologia , Inconsciência/induzido quimicamente , Tálamo/fisiologia , Eletroencefalografia
9.
Eur J Anaesthesiol ; 41(3): 208-216, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38165145

RESUMO

BACKGROUND: Remimazolam is a novel ultra-short-acting benzodiazepine sedative that acts on the gamma-aminobutyric acid type A receptor (GABAAR). OBJECTIVE: To compare the efficacies of remimazolam (RMZ), and propofol (PROP) combined with remifentanil and cisatracurium for total intravenous anaesthesia (TIVA) in patients undergoing urological surgery. DESIGN: A prospective, single-blind, randomised, noninferiority clinical trial. SETTING: Single centre from 1 January 2022 to 30 March 2022. PATIENTS: A total of 146 adult patients undergoing elective urological surgery. INTERVENTION: Patients were randomly allocated in a 1 : 1 ratio to the PROP or RMZ groups. In the PROP group, anaesthesia was induced with propofol at 100 mg min -1 to reach a bispectral index score (BIS) of 40 to 60. After loss of consciousness (LOC), intravenous fentanyl 3 µg kg -1 was administered, followed by cisatracurium 0.3 mg kg -1 . Patients were intubated 3 min after cisatracurium administration. Anaesthesia was maintained with the combination of propofol (plasma concentration: 2.5 to 4 µg ml -1 ) and remifentanil (plasma concentration: 2.5 to 4 ng ml -1 ). In the RMZ group, anaesthesia was induced with remimazolam tosilate starting at 10 mg kg -1  h -1 to reach a BIS of 40 to 60 and maintained between 0.2 and 2 mg kg -1  h -1 . After LOC, fentanyl and cisatracurium were administered and intubation was performed as in the PROP group. Anaesthesia was maintained with a combination of remimazolam (0.2 to 2 mg kg -1  h -1 ) and remifentanil (plasma concentration: 2.5 to 4 ng ml -1 ). MAIN OUTCOME MEASURES: The primary outcome was the TIVA success rate. The predefined noninferiority margin considered an absolute difference of 6% in the primary outcome between the groups. The secondary outcomes were vital signs, anaesthesia and surgery characteristics, and adverse events. RESULTS: All patients completed the trial. The success rates of TIVA with remimazolam and propofol were 100 and 98.6%, respectively. The incidence of hypotension during anaesthesia was lower in the RMZ group (26%) than in the PROP group (46.6%) ( P  = 0.016). The median [IQR] total consumption of ephedrine during anaesthesia was higher in the PROP group 10 [0 to 12.5] mg than in the RMZ group 0 [0 to 10] mg ( P  = 0.0002). The incidence of injection pain was significantly higher in the PROP group (76.7%) than in the RMZ group (0; P  < 0.001). No significant differences in the controllability of the anaesthesia depth, anaesthesia and surgery characteristics, or vital signs were observed between the groups. CONCLUSION: Remimazolam demonstrated noninferior efficacy to propofol combined with remifentanil and cisatracurium for TIVA in patients undergoing urological surgery. TRIAL REGISTRATION: Chictr.org.cn, identifier: ChiCTR2100050923. CLINICAL REGISTRATION: The study was registered in the Chinese Clinical Trial Registry (ChiCTR2100050923, Principal investigator: Xuehai Guan, Date of registration: 8 November 2021, https://www.chictr.org.cn/showproj.html?proj=133466 ).


Assuntos
Benzodiazepinas , Propofol , Adulto , Humanos , Anestesia Intravenosa , Anestésicos Intravenosos/efeitos adversos , Anestésicos Intravenosos/uso terapêutico , Fentanila , Propofol/efeitos adversos , Propofol/uso terapêutico , Estudos Prospectivos , Remifentanil , Método Simples-Cego , Inconsciência/induzido quimicamente
10.
Anesthesiology ; 140(2): 313-328, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193734

RESUMO

The optimal consciousness level required for general anesthesia with surgery is unclear, but in existing practice, anesthetic oblivion, may be incomplete. This article discusses the concept of consciousness, how it is altered by anesthetics, the challenges for assessing consciousness, currently used technologies for assessing anesthesia levels, and future research directions. Wakefulness is marked by a subjective experience of existence (consciousness), perception of input from the body or the environment (connectedness), the ability for volitional responsiveness, and a sense of continuity in time. Anesthetic drugs may selectively impair some of these components without complete extinction of the subjective experience of existence. In agreement with Sanders et al. (2012), the authors propose that a state of disconnected consciousness is the optimal level of anesthesia, as it likely avoids both awareness and the possible dangers of oversedation. However, at present, there are no reliably tested indices that can discriminate between connected consciousness, disconnected consciousness, and complete unconsciousness.


Assuntos
Anestesia Geral , Estado de Consciência , Humanos , Vigília , Inconsciência/induzido quimicamente , Inconsciência/diagnóstico
11.
Eur J Trauma Emerg Surg ; 50(1): 157-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36707437

RESUMO

PURPOSE: The primary aim was to compare the prevalence of acute and delayed intracranial haemorrhage (ICH) following mild traumatic brain injury (mTBI) in patients on antithrombotic medication referred to a clinic for oral and plastic maxillofacial surgery. The secondary aim was to evaluate the need for short-term hospitalisation based on initial radiological and clinical findings. METHODS: This was an observational retrospective single-centre study of all patients on antithrombotic medication who were admitted to our department of oral and plastic maxillofacial surgery with mTBI over a 5 year period. Demographic and anamnesis data, injury characteristics, antithrombotic medication, radiological findings, treatment, and outcome were analysed. Patients were divided into the following four groups based on their antithrombotic medication: (1) single antiplatelet users, (2) vitamin K antagonist users, (3) direct oral anticoagulant users, and (4) double antithrombotic users. All patients underwent an emergency cranial CT (CT0) at admission. Based on clinical and radiological evaluation, different treatment protocols were applied. Patients with positive CT0 findings and patients with secondary neurological deterioration received a control CT (CT1) before discharge. Acute and delayed ICH and patient's outcome during hospitalisation were evaluated using descriptive statistical analysis. RESULTS: A total of 696 patients (mean age, 71.6 years) on antithrombotic medication who presented at our department with mTBI were included in the analysis. Most injuries were caused by a ground-level fall (76.9%). Thirty-six patients (5.1%) developed an acute traumatic ICH, and 47 intracerebral lesions were detected by radiology-most of these in patients taking acetylsalicylic acid. No association was detected between ICH and antithrombotic medication (p = 0.4353). In total, 258 (37.1%) patients were admitted for 48 h in-hospital observation. The prevalence of delayed ICH was 0.1%, and the mortality rate was 0.1%. Multivariable analysis identified a Glasgow Coma Scale (GCS) of < 15, loss of consciousness, amnesia, headache, dizziness, and nausea as clinical characteristics significantly associated with an increased risk of acute ICH, whereas age, sex, and trauma mechanism were not associated with ICH prevalence. Of the 39 patients who underwent a control CT1, most had a decreasing or at least constant intracranial lesion; in three patients, intracranial bleeding increased but was not clinically relevant. CONCLUSION: According to our experience, antithrombotic therapy does not increase the rate of ICH after mTBI. A GCS of < 15, loss of consciousness, amnesia, headache, dizziness, and nausea are indicators of higher ICH risk. A second CT scan is more effective in patients with secondary neurological deterioration. Initial CT findings were not clinically relevant and should not indicate in-hospital observation.


Assuntos
Concussão Encefálica , Humanos , Idoso , Concussão Encefálica/complicações , Fibrinolíticos/efeitos adversos , Estudos Retrospectivos , Tontura/induzido quimicamente , Tontura/complicações , Tontura/tratamento farmacológico , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/epidemiologia , Anticoagulantes/efeitos adversos , Hospitalização , Tomografia Computadorizada por Raios X/efeitos adversos , Inconsciência/induzido quimicamente , Inconsciência/complicações , Inconsciência/tratamento farmacológico , Cefaleia/induzido quimicamente , Cefaleia/complicações , Cefaleia/tratamento farmacológico , Amnésia/induzido quimicamente , Amnésia/complicações , Amnésia/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/complicações , Náusea/tratamento farmacológico
12.
J Cogn Neurosci ; 36(2): 394-413, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902596

RESUMO

A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.


Assuntos
Córtex Auditivo , Propofol , Animais , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo/fisiologia , Anestesia Geral , Córtex Auditivo/fisiologia
13.
Br J Anaesth ; 132(2): 320-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953203

RESUMO

BACKGROUND: The neural mechanisms underlying sevoflurane-induced loss of consciousness and recovery of consciousness after anaesthesia remain unknown. We investigated whether glutamatergic pedunculopontine tegmental nucleus (PPT) neurones are involved in the regulation of states of consciousness under sevoflurane anaesthesia. METHODS: In vivo fibre photometry combined with electroencephalography (EEG)/electromyography recording was used to record changes in the activity of glutamatergic PPT neurones under sevoflurane anaesthesia. Chemogenetic and cortical EEG recordings were used to explore their roles in the induction of and emergence from sevoflurane anaesthesia. Optogenetic methods combined with EEG recordings were used to explore the roles of glutamatergic PPT neurones and of the PPT-ventral tegmental area pathway in maintenance of anaesthesia. RESULTS: The population activity of glutamatergic PPT neurones was reduced before sevoflurane-induced loss of righting reflex and gradually recovered after return of righting reflex. Chemogenetic inhibition of glutamatergic PPT neurones accelerated induction of anaesthesia (hM4Di-CNO vs mCherry-CNO, 76 [17] vs 121 [27] s, P<0.0001) and delayed emergence from sevoflurane anaesthesia (278 [98] vs 145 [53] s, P<0.0001) but increased sevoflurane sensitivity. Optogenetic stimulation of glutamatergic PPT neurons or of the PPT-ventral tegmental area pathway promoted cortical activation and behavioural emergence during steady-state sevoflurane anaesthesia, reduced the depth of anaesthesia, and caused cortical arousal during sevoflurane-induced EEG burst suppression. CONCLUSIONS: Glutamatergic PPT neurones regulate induction and emergence of sevoflurane anaesthesia.


Assuntos
Núcleo Tegmental Pedunculopontino , Sevoflurano , Inconsciência , Animais , Camundongos , Eletroencefalografia , Neurônios , Sevoflurano/farmacologia , Inconsciência/induzido quimicamente
14.
Br J Anaesth ; 132(2): 218-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104006

RESUMO

Amongst electroencephalographic markers of anaesthetic-induced unresponsiveness, those that estimate loss of frontoparietal functional connectivity detect loss of sensory perceptual connection with the outside world, rather than full phenomenological unconsciousness. This transition to unconsciousness is manifest as further incremental changes in indices of electroencephalographic complexity.


Assuntos
Estado de Consciência , Propofol , Humanos , Propofol/farmacologia , Desinformação , Inconsciência/induzido quimicamente , Eletroencefalografia
15.
Anesthesiology ; 140(5): 935-949, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157438

RESUMO

BACKGROUND: Identifying the state-related "neural correlates of consciousness" for anesthetics-induced unconsciousness is challenging. Spatiotemporal complexity is a promising tool for investigating consciousness. The authors hypothesized that spatiotemporal complexity may serve as a state-related but not drug-related electroencephalography (EEG) indicator during an unconscious state induced by different anesthetic drugs (e.g., propofol and esketamine). METHODS: The authors recorded EEG from patients with unconsciousness induced by propofol (n = 10) and esketamine (n = 10). Both conventional microstate parameters and microstate complexity were analyzed. Spatiotemporal complexity was constructed by microstate sequences and complexity measures. Two different EEG microstate complexities were proposed to quantify the randomness (type I) and complexity (type II) of the EEG microstate series during the time course of the general anesthesia. RESULTS: The coverage and occurrence of microstate E (prefrontal pattern) and the duration of microstate B (right frontal pattern) could distinguish the states of preinduction wakefulness, unconsciousness, and recovery under both anesthetics. Type I EEG microstate complexity based on mean information gain significantly increased from awake to unconsciousness state (propofol: from mean ± SD, 1.562 ± 0.059 to 1.672 ± 0.023, P < 0.001; esketamine: 1.599 ± 0.051 to 1.687 ± 0.013, P < 0.001), and significantly decreased from unconsciousness to recovery state (propofol: 1.672 ± 0.023 to 1.537 ± 0.058, P < 0.001; esketamine: 1.687 ± 0.013 to 1.608 ± 0.028, P < 0.001) under both anesthetics. In contrast, type II EEG microstate fluctuation complexity significantly decreased in the unconscious state under both drugs (propofol: from 2.291 ± 0.771 to 0.782 ± 0.163, P < 0.001; esketamine: from 1.645 ± 0.417 to 0.647 ± 0.252, P < 0.001), and then increased in the recovery state (propofol: 0.782 ± 0.163 to 2.446 ± 0.723, P < 0.001; esketamine: 0.647 ± 0.252 to 1.459 ± 0.264, P < 0.001). CONCLUSIONS: Both type I and type II EEG microstate complexities are drug independent. Thus, the EEG microstate complexity measures that the authors proposed are promising tools for building state-related neural correlates of consciousness to quantify anesthetic-induced unconsciousness.


Assuntos
Anestésicos , Ketamina , Propofol , Humanos , Propofol/efeitos adversos , Encéfalo , Inconsciência/induzido quimicamente , Estado de Consciência , Eletroencefalografia , Anestésicos/efeitos adversos
16.
Neuroimage ; 283: 120426, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898378

RESUMO

The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 µg/ml and a stepwise increase of 0.2 µg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.


Assuntos
Anestesia , Propofol , Humanos , Propofol/farmacologia , Estado de Consciência/fisiologia , Eletroencefalografia , Inconsciência/induzido quimicamente , Anestésicos Intravenosos/farmacologia
17.
Brain Struct Funct ; 228(9): 2115-2124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733058

RESUMO

Spontaneous brain activity exhibits a highly structured modular organization that varies across individuals and reconfigures over time. Although it has been proposed that brain organization is shaped by an economic trade-off between minimizing costs and facilitating efficient information transfer, it remains untested whether modular variability and its changes during unconscious conditions might be constrained by the economy of brain organization. We acquired functional MRI and FDG-PET in rats under three different levels of consciousness induced by propofol administration. We examined alterations in brain modular variability during loss of consciousness from mild sedation to deep anesthesia. We also investigated the relationships between modular variability with glucose metabolism and functional connectivity strength as well as their alterations during unconsciousness. We observed that modular variability increased during loss of consciousness. Critically, across-individual modular variability is oppositely associated with functional connectivity strength and cerebral metabolism, and with deepening dosage of anesthesia, becoming increasingly dependent on basal metabolism over functional connectivity. These results suggested that, propofol-induced unconsciousness may lead to brain modular reorganization, which are putatively shaped by re-negotiations between energetic resources and communication efficiency.


Assuntos
Propofol , Ratos , Animais , Propofol/efeitos adversos , Inconsciência/induzido quimicamente , Encéfalo , Estado de Consciência , Imageamento por Ressonância Magnética/métodos , Comunicação , Eletroencefalografia
18.
Neuron ; 111(21): 3479-3495.e6, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659409

RESUMO

What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.


Assuntos
Estado de Consciência , Propofol , Humanos , Estado de Consciência/fisiologia , Inconsciência/induzido quimicamente , Propofol/farmacologia , Encéfalo/fisiologia , Anestesia Geral , Eletroencefalografia
19.
Proc Natl Acad Sci U S A ; 120(30): e2300058120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467269

RESUMO

Unconsciousness maintained by GABAergic anesthetics, such as propofol and sevoflurane, is characterized by slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations (8 to 14 Hz) that are readily visible in the electroencephalogram. At higher doses, these slow-delta-alpha (SDA) oscillations transition into burst suppression. This is a marker of a state of profound brain inactivation during which isoelectric (flatline) periods alternate with periods of the SDA patterns present at lower doses. While the SDA and burst suppression patterns have been analyzed separately, the transition from one to the other has not. Using state-space methods, we characterize the dynamic evolution of brain activity from SDA to burst suppression and back during unconsciousness maintained with propofol or sevoflurane in volunteer subjects and surgical patients. We uncover two dynamical processes that continuously modulate the SDA oscillations: alpha-wave amplitude and slow-wave frequency modulation. We present an alpha modulation index and a slow modulation index which characterize how these processes track the transition from SDA oscillations to burst suppression and back to SDA oscillations as a function of increasing and decreasing anesthetic doses, respectively. Our biophysical model reveals that these dynamics track the combined evolution of the neurophysiological and metabolic effects of a GABAergic anesthetic on brain circuits. Our characterization of the modulatory dynamics mediated by GABAergic anesthetics offers insights into the mechanisms of these agents and strategies for monitoring and precisely controlling the level of unconsciousness in patients under general anesthesia.


Assuntos
Anestésicos , Propofol , Humanos , Propofol/farmacologia , Sevoflurano/farmacologia , Inconsciência/induzido quimicamente , Anestésicos/farmacologia , Encéfalo/fisiologia , Eletroencefalografia/métodos
20.
Cereb Cortex ; 33(17): 9850-9866, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37434363

RESUMO

Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.


Assuntos
Anestesia , Propofol , Humanos , Estado de Consciência , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo , Sono , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA