Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.234
Filtrar
1.
PLoS One ; 19(5): e0303213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753710

RESUMO

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Assuntos
Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Tretinoína , Proteína de Morte Celular Associada a bcl , Animais , Proteína de Morte Celular Associada a bcl/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tretinoína/farmacologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Apoptose/efeitos dos fármacos , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
2.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773900

RESUMO

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Camundongos , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Prognóstico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia
3.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Mitocôndrias/metabolismo , Masculino , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Apoptose , Sirtuínas
4.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716368

RESUMO

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
5.
J Physiol Pharmacol ; 75(2): 145-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736262

RESUMO

Stroke is the second leading cause of death worldwide. Understanding of gene expression dynamics could bring new approaches in diagnostics and therapy of stroke. Small noncoding molecules termed 'microRNA' represent the most flexible network of gene expression regulators. To screen out miRNAs that are mainly regulated during reperfusion in mechanically embolized patients, and study their mechanisms of action in reperfusion injury after thrombectomy, in order to find new therapeutic targets for mechanically embolized patients. Serums from 30 patients with moderate to severe stroke after mechanical thrombectomy (MT) were collected to measure miRNA expressions. Clinical information of patients was analyze, and patients were divided into poor prognosis and good prognosis. Factors affecting prognosis was classified, and independent risk factors for poor prognosis were determined. Prognostic value of National Institutes of Health Stroke Scale (NIHSS) score on admission to patients with MT was assessed. ROC (receiver operating characteristic) curves were drawn, and Kaplan-Merier method determined whether different NIHSS scores at admission had any difference in the in-hospital survival rate of consistency index/random consistency index (CI/RI) patients treated with MT. An oxygen-glucose deprivation/reperfusion (OGD/R) cell model and an middle cerebral artery occlusion (MCAO)/reperfusion mouse model were established, in which miR-298 expression was tested. In OGD/R cells, proliferation, apoptosis, and autophagy were assessed after intervention with miR-298 and/or autophagy related gene 5 (ATG5). In MCAO mice, the infarct area was calculated, and neurological function was assessed. The relationship between miR-298 and ATG5 was explored and validated. Age, diabetes, hypertension, hemorrhage transformation, NIHSS score at admission, leukocyte, neutrophil count and neutrophil to lymphocyte ratio (NLR) level were associated with patient's prognosis. Diabetes, NIHSS score at admission, and hemorrhagic transformation were independent risk factors for predicting poor prognosis in patients treated with MT. NIHSS score on admission had a predictive value on patient's prognosis. miR-298 was upregulated in acute cerebral ischemia patients with MT (p<0.05), especially in those with poor prognosis. miR-298 was elevated in both cell and mouse models (p<0.05). Apoptosis and autophagy of cells were weakened after miR-298 knockdown, and infarction in the mouse brain tissues was reduced. ATG5 was a target of miR-298. Overexpressing ATG5 rescued miR-298-induced apoptosis and autophagy. In conclusion: regulation of miR-298 and ATG5 attenuates neuronal apoptosis and autophagy, providing a new strategy for brain injury after reperfusion in patients with MT.


Assuntos
Apoptose , MicroRNAs , Traumatismo por Reperfusão , Trombectomia , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Trombectomia/métodos , Traumatismo por Reperfusão/metabolismo , Camundongos , Infarto da Artéria Cerebral Média/cirurgia , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Autofagia/fisiologia , Prognóstico , Acidente Vascular Cerebral
6.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697555

RESUMO

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
7.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717643

RESUMO

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Assuntos
Anexina A1 , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Regulação para Cima , Animais , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Anexina A1/metabolismo , Regulação para Cima/efeitos dos fármacos , Sirtuínas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
8.
Sci Rep ; 14(1): 10186, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702377

RESUMO

Spreading depolarizations (SDs) occur frequently in patients with malignant hemispheric stroke. In animal-based experiments, SDs have been shown to cause secondary neuronal damage and infarct expansion during the initial period of infarct progression. In contrast, the influence of SDs during the delayed period is not well characterized yet. Here, we analyzed the impact of SDs in the delayed phase after cerebral ischemia and the potential protective effect of ketamine. Focal ischemia was induced by distal occlusion of the left middle cerebral artery in C57BL6/J mice. 24 h after occlusion, SDs were measured using electrocorticography and laser-speckle imaging in three different study groups: control group without SD induction, SD induction with potassium chloride, and SD induction with potassium chloride and ketamine administration. Infarct progression was evaluated by sequential MRI scans. 24 h after occlusion, we observed spontaneous SDs with a rate of 0.33 SDs/hour which increased during potassium chloride application (3.37 SDs/hour). The analysis of the neurovascular coupling revealed prolonged hypoemic and hyperemic responses in this group. Stroke volume increased even 24 h after stroke onset in the SD-group. Ketamine treatment caused a lesser pronounced hypoemic response and prevented infarct growth in the delayed phase after experimental ischemia. Induction of SDs with potassium chloride was significantly associated with stroke progression even 24 h after stroke onset. Therefore, SD might be a significant contributor to delayed stroke progression. Ketamine might be a possible drug to prevent SD-induced delayed stroke progression.


Assuntos
Isquemia Encefálica , Progressão da Doença , Ketamina , Camundongos Endogâmicos C57BL , Ketamina/farmacologia , Animais , Camundongos , Masculino , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Infarto da Artéria Cerebral Média
9.
Sci Rep ; 14(1): 10201, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702399

RESUMO

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico , Receptores CCR4 , Linfócitos T Reguladores , Animais , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Microglia/metabolismo , Microglia/imunologia , Masculino , Camundongos Endogâmicos C57BL , Quimiocinas/metabolismo
10.
Croat Med J ; 65(2): 122-137, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38706238

RESUMO

AIM: To compare the effectiveness of artificial neural network (ANN) and traditional statistical analysis on identical data sets within the splenectomy-middle carotid artery occlusion (MCAO) mouse model. METHODS: Mice were divided into the splenectomized (SPLX) and sham-operated (SPLX-sham) group. A splenectomy was conducted 14 days before middle carotid artery occlusion (MCAO). Magnetic resonance imaging (MRI), bioluminescent imaging, neurological scoring (NS), and histological analysis, were conducted at two, four, seven, and 28 days after MCAO. Frequentist statistical analyses and ANN analysis employing a multi-layer perceptron architecture were performed to assess the probability of discriminating between SPLX and SPLX-sham mice. RESULTS: Repeated measures ANOVA showed no significant differences in body weight (F (5, 45)=0.696, P=0.629), NS (F (2.024, 18.218)=1.032, P=0.377) and brain infarct size on MRI between the SPLX and SPLX-sham groups post-MCAO (F (2, 24)=0.267, P=0.768). ANN analysis was employed to predict SPLX and SPL-sham classes. The highest accuracy in predicting SPLX class was observed when the model was trained on a data set containing all variables (0.7736±0.0234). For SPL-sham class, the highest accuracy was achieved when it was trained on a data set excluding the variable combination MR contralateral/animal mass/NS (0.9284±0.0366). CONCLUSION: This study validated the neuroprotective impact of splenectomy in an MCAO model using ANN for data analysis with a reduced animal sample size, demonstrating the potential for leveraging advanced statistical methods to minimize sample sizes in experimental biomedical research.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Esplenectomia , Animais , Camundongos , Esplenectomia/métodos , Infarto da Artéria Cerebral Média/cirurgia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Tamanho da Amostra , Masculino
11.
Brain Behav ; 14(5): e3504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698583

RESUMO

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Assuntos
Eletroacupuntura , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Eletroacupuntura/métodos , Masculino , Ratos , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/terapia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Modelos Animais de Doenças , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , AVC Isquêmico/terapia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia
12.
Zhen Ci Yan Jiu ; 49(5): 463-471, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764117

RESUMO

OBJECTIVES: To observe the effect of electro-scalp acupuncture (ESA) on the expression of cytochrome P450a1/b1 (CYP27a1/b1), cytochrome P45024a (CYP24a), signal transducer and activator of transcription (STAT)4, STAT6, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-4 in ischemic cerebral cortex of rats with acute ischemic stroke, so as to explore its mechanism in alleviating inflammatory reaction of ischemic stroke. METHODS: Sixty SD rats were randomly divided into sham-operation, model, vitamin D3 and ESA groups, with 15 rats in each group. The middle cerebral artery occlusion rat model was established with thread ligation according to Zea-Longa's method. Rats in the vitamin D3 group were given 1, 25-VitD3 solution (3 ng·100 g-1·d-1) by gavage, once daily for 7 days. Rats in the ESA group were treated at bilateral anterior parietotemporal slash (MS6) with ESA (2 Hz/100 Hz, 1 mA), 30 min a day for 7 days. Before and after interventions, the neurological deficit score and neurobehavioral score were evaluated. TTC staining was used to detect the volume of cerebral infarction in rats. The positive expressions of CYP24a, CYP27a1 and CYP27b1 in the cerebral cortex of ischemic area were detected by immunofluorescence. The mRNA expressions of STAT4 and STAT6 in the cerebral cortex of ischemic area were detected by quantitative real-time PCR. The protein expression levels of TNF-α, IL-1ß and IL-4 in the cerebral cortex of ischemic area were detected by Western blot. RESULTS: Compared with the sham-operation group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were increased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA, protein expression level of IL-4 were decreased (P<0.01) in the model group. After the treatment and compared with the model group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were decreased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA expression level, protein expression level of IL-4 were increased (P<0.01) in the ESA and vitamin D3 groups. CONCLUSIONS: ESA can alleviate the inflammatory response in ischemic stroke, which maybe related to its function in regulating the balance between CYP27a1/b1 and CYP24a, converting vitamin D into active vitamin D3, inhibiting vitamin D3 degradation, and regulating Th1/Th2 balance.


Assuntos
Infarto da Artéria Cerebral Média , Ratos Sprague-Dawley , Vitamina D3 24-Hidroxilase , Animais , Ratos , Masculino , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Humanos , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Citocinas/metabolismo , Citocinas/genética , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Córtex Cerebral/metabolismo , Pontos de Acupuntura , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Eletroacupuntura , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
13.
Sci Rep ; 14(1): 10008, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693282

RESUMO

Historically, investigators have not differentiated between patients with and without hemorrhagic transformation (HT) in large core ischemic stroke at risk for life-threatening mass effect (LTME) from cerebral edema. Our objective was to determine whether LTME occurs faster in those with HT compared to those without. We conducted a two-center retrospective study of patients with ≥ 1/2 MCA territory infarct between 2006 and 2021. We tested the association of time-to-LTME and HT subtype (parenchymal, petechial) using Cox regression, controlling for age, mean arterial pressure, glucose, tissue plasminogen activator, mechanical thrombectomy, National Institute of Health Stroke Scale, antiplatelets, anticoagulation, temperature, and stroke side. Secondary and exploratory outcomes included mass effect-related death, all-cause death, disposition, and decompressive hemicraniectomy. Of 840 patients, 358 (42.6%) had no HT, 403 (48.0%) patients had petechial HT, and 79 (9.4%) patients had parenchymal HT. LTME occurred in 317 (37.7%) and 100 (11.9%) had mass effect-related deaths. Parenchymal (HR 8.24, 95% CI 5.46-12.42, p < 0.01) and petechial HT (HR 2.47, 95% CI 1.92-3.17, p < 0.01) were significantly associated with time-to-LTME and mass effect-related death. Understanding different risk factors and sequelae of mass effect with and without HT is critical for informed clinical decisions.


Assuntos
Hospitalização , Infarto da Artéria Cerebral Média , Humanos , Feminino , Masculino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Infarto da Artéria Cerebral Média/complicações , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/mortalidade , Hemorragia Cerebral/complicações , Edema Encefálico/etiologia , Fatores de Risco , AVC Isquêmico/mortalidade
14.
Mol Med ; 30(1): 59, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745316

RESUMO

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Assuntos
Autofagia , Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Autofagia/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Polaridade Celular/efeitos dos fármacos
15.
Eur Radiol Exp ; 8(1): 59, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744784

RESUMO

BACKGROUND: This study investigates the potential of diffusion tensor imaging (DTI) in identifying penumbral volume (PV) compared to the standard gadolinium-required perfusion-diffusion mismatch (PDM), utilizing a stack-based ensemble machine learning (ML) approach with enhanced explainability. METHODS: Sixteen male rats were subjected to middle cerebral artery occlusion. The penumbra was identified using PDM at 30 and 90 min after occlusion. We used 11 DTI-derived metrics and 14 distance-based features to train five voxel-wise ML models. The model predictions were integrated using stack-based ensemble techniques. ML-estimated and PDM-defined PVs were compared to evaluate model performance through volume similarity assessment, the Pearson correlation analysis, and Bland-Altman analysis. Feature importance was determined for explainability. RESULTS: In the test rats, the ML-estimated median PV was 106.4 mL (interquartile range 44.6-157.3 mL), whereas the PDM-defined median PV was 102.0 mL (52.1-144.9 mL). These PVs had a volume similarity of 0.88 (0.79-0.96), a Pearson correlation coefficient of 0.93 (p < 0.001), and a Bland-Altman bias of 2.5 mL (2.4% of the mean PDM-defined PV), with 95% limits of agreement ranging from -44.9 to 49.9 mL. Among the features used for PV prediction, the mean diffusivity was the most important feature. CONCLUSIONS: Our study confirmed that PV can be estimated using DTI metrics with a stack-based ensemble ML approach, yielding results comparable to the volume defined by the standard PDM. The model explainability enhanced its clinical relevance. Human studies are warranted to validate our findings. RELEVANCE STATEMENT: The proposed DTI-based ML model can estimate PV without the need for contrast agent administration, offering a valuable option for patients with kidney dysfunction. It also can serve as an alternative if perfusion map interpretation fails in the clinical setting. KEY POINTS: • Penumbral volume can be estimated by DTI combined with stack-based ensemble ML. • Mean diffusivity was the most important feature used for predicting penumbral volume. • The proposed approach can be beneficial for patients with kidney dysfunction.


Assuntos
Imagem de Tensor de Difusão , Aprendizado de Máquina , Animais , Masculino , Ratos , Imagem de Tensor de Difusão/métodos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Ratos Sprague-Dawley
16.
J Med Case Rep ; 18(1): 244, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734655

RESUMO

BACKGROUND: Danon disease is a lysosomal storage disorder with X-linked inheritance. The classic triad is severe hypertrophic cardiomyopathy, myopathy, and intellectual disability, with different phenotypes between both genders. Ischemic stroke is an uncommon complication, mostly cardioembolic, related to intraventricular thrombus or atrial fibrillation, among others. CASE REPORT: We report the case of a 14-year-old Caucasian male patient with Danon disease who suffered from an acute ischemic stroke due to occlusion in the M1 segment of the middle cerebral artery. He underwent mechanical thrombectomy, resulting in successful revascularization with satisfactory clinical outcome. We objectified the intraventricular thrombus in the absence of arrhythmic events. CONCLUSION: To our knowledge, we report the first case of ischemic stroke related to Danon disease treated with endovascular treatment.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Humanos , Masculino , Doença de Depósito de Glicogênio Tipo IIb/complicações , Adolescente , Procedimentos Endovasculares , AVC Isquêmico/cirurgia , AVC Isquêmico/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/cirurgia , Resultado do Tratamento , Trombectomia
17.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700011

RESUMO

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , AVC Isquêmico/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Camundongos Knockout , Camundongos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Sistema Nervoso Simpático/fisiopatologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Cardiopatias/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/deficiência
18.
BMC Complement Med Ther ; 24(1): 140, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575941

RESUMO

BACKGROUND: In traditional Asian medicine, dried rhizomes of Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma [CR]) have long been used to treat pain disorders that affect the head and face such as headaches. Furthermore, they have been used primarily for blood circulation improvement or as an analgesic and anti-inflammatory medicine. This study aimed to investigate the neuroprotective effects of a methanol extract of CR (CRex) on ischemic stroke in mice caused by middle cerebral artery occlusion (MCAO). METHODS: C57BL/6 mice were given a 1.5-h transient MCAO (MCAO control and CRex groups); CRex was administered in the mice of the CRex group at 1,000-3,000 mg/kg either once (single dose) or twice (twice dose) before MCAO. The mechanism behind the neuroprotective effects of CRex was examined using the following techniques: brain infarction volume, edema, neurological deficit, novel object recognition test (NORT), forepaw grip strength, and immuno-fluorescence staining. RESULTS: Pretreating the mice with CRex once at 1,000 or 3,000 mg/kg and twice at 1,000 mg/kg 1 h before MCAO, brought about a significantly decrease in the infarction volumes. Furthermore, pretreating mice with CRex once at 3,000 mg/kg 1 h before MCAO significantly suppressed the reduction of forepaw grip strength of MCAO-induced mice. In the MCAO-induced group, preadministration of CRex inhibited the reduction in the discrimination ratio brought on by MCAO in a similar manner. CRex exhibited these effects by suppressing the activation of astrocytes and microglia, which regulated the inflammatory response. CONCLUSIONS: This study proposes a novel development for the treatment of ischemic stroke and provides evidence favoring the use of L. chuanxiong rhizomes against ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Camundongos , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Metanol , Microglia , Astrócitos , Rizoma , Camundongos Endogâmicos C57BL
19.
Brain Res Bull ; 211: 110948, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614406

RESUMO

BACKGROUND: The treatment for cerebral ischemia remains limited, and new therapeutic strategies are urgently needed. Exosome has shown great promise for the treatment of cerebral ischemia. Steroid receptor coactivator-3 (SRC-3) was reported to be involved in neurological performances. In this study, we aimed to investigate the protective effects of mesenchymal stem cell (MSC)-derived exosomes overexpressing SRC-3 on cerebral ischemia in mice. METHODS: The mice were treated with an intracerebroventricular injection of GFP-overexpressed exosomes (GFP-exo) and SRC-3-overexpressed exosomes (SRC3-exo) in a middle cerebral artery occlusion (MCAO) model of cerebral ischemia. RESULTS: The results showed that SRC3-exo treatment significantly inhibited lipid peroxidation and ferroptosis of the neurons subjected to oxygen-glucose deprivation. It further suppressed the activation of microglia and astrocytes, and decreased the production of pro-inflammatory cytokines in the brains of MCAO mice. Furthermore, SRC3-exo treatment reduced the water content of brain tissue and infarct size, which alleviated the neurological damage and improved neurological performances in the MCAO mice. CONCLUSIONS: Our results suggest that MSC-derived exosomes expressing SRC3 can be a therapeutic strategy for cerebral ischemia by inhibiting ferroptosis.


Assuntos
Isquemia Encefálica , Exossomos , Ferroptose , Infarto da Artéria Cerebral Média , Células-Tronco Mesenquimais , Coativador 3 de Receptor Nuclear , Animais , Exossomos/metabolismo , Exossomos/transplante , Camundongos , Ferroptose/fisiologia , Células-Tronco Mesenquimais/metabolismo , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Coativador 3 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/genética , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Modelos Animais de Doenças , Astrócitos/metabolismo , Encéfalo/metabolismo
20.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA