Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nat Commun ; 15(1): 4932, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858365

RESUMO

This study investigates the role of circular RNAs (circRNAs) in the context of Varicella-Zoster Virus (VZV) lytic infection. We employ two sequencing technologies, short-read sequencing and long-read sequencing, following RNase R treatment on VZV-infected neuroblastoma cells to identify and characterize both cellular and viral circRNAs. Our large scanning analysis identifies and subsequent experiments confirm 200 VZV circRNAs. Moreover, we discover numerous VZV latency-associated transcripts (VLTs)-like circRNAs (circVLTslytic), which contain multiple exons and different isoforms within the same back-splicing breakpoint. To understand the functional significance of these circVLTslytic, we utilize the Bacteria Artificial Chromosome system to disrupt the expression of viral circRNAs in genomic DNA location. We reveal that the sequence flanking circVLTs' 5' splice donor plays a pivotal role as a cis-acting element in the formation of circVLTslytic. The circVLTslytic is dispensable for VZV replication, but the mutation downstream of circVLTslytic exon 5 leads to increased acyclovir sensitivity in VZV infection models. This suggests that circVLTslytic may have a role in modulating the sensitivity to antiviral treatment. The findings shed new insight into the regulation of cellular and viral transcription during VZV lytic infection, emphasizing the intricate interplay between circRNAs and viral processes.


Assuntos
Herpesvirus Humano 3 , RNA Circular , RNA Viral , Replicação Viral , RNA Circular/genética , RNA Circular/metabolismo , Herpesvirus Humano 3/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética , Linhagem Celular Tumoral , Latência Viral/genética , Infecção pelo Vírus da Varicela-Zoster/virologia , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Éxons/genética
2.
Rev Med Virol ; 34(4): e2554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862398

RESUMO

The Varicella-zoster virus (VZV), classified as a neurotropic member of the Herpesviridae family, exhibits a characteristic pathogenicity, predominantly inducing varicella, commonly known as chickenpox, during the initial infectious phase, and triggering the reactivation of herpes zoster, more commonly recognized as shingles, following its emergence from a latent state. The pathogenesis of VZV-associated neuroinflammation involves a complex interplay between viral replication within sensory ganglia and immune-mediated responses that contribute to tissue damage and dysfunction. Upon primary infection, VZV gains access to sensory ganglia, establishing latent infection within neurons. During reactivation, the virus can spread along sensory nerves, triggering a cascade of inflammatory mediators, chemokines, and immune cell infiltration in the affected neural tissues. The role of both adaptive and innate immune reactions, including the contributions of T and B cells, macrophages, and dendritic cells, in orchestrating the immune-mediated damage in the central nervous system is elucidated. Furthermore, the aberrant activation of the natural defence mechanism, characterised by the dysregulated production of immunomodulatory proteins and chemokines, has been implicated in the pathogenesis of VZV-induced neurological disorders, such as encephalitis, myelitis, and vasculopathy. The intricate balance between protective and detrimental immune responses in the context of VZV infection emphasises the necessity for an exhaustive comprehension of the immunopathogenic mechanisms propelling neuroinflammatory processes. Despite the availability of vaccines and antiviral therapies, VZV-related neurological complications remain a significant concern, particularly in immunocompromised individuals and the elderly. Elucidating these mechanisms might facilitate the emergence of innovative immunomodulatory strategies and targeted therapies aimed at mitigating VZV-induced neuroinflammatory damage and improving clinical outcomes. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of VZV infections.


Assuntos
Herpesvirus Humano 3 , Humanos , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpes Zoster/virologia , Herpes Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/etiologia , Animais , Varicela/virologia , Varicela/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia
3.
Nat Commun ; 15(1): 5318, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909022

RESUMO

During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.


Assuntos
Adesão Celular , Herpesvirus Humano 3 , Molécula 1 de Adesão Intercelular , Interferon gama , Queratinócitos , Linfócitos T , Humanos , Interferon gama/metabolismo , Interferon gama/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Queratinócitos/virologia , Queratinócitos/metabolismo , Queratinócitos/imunologia , Herpesvirus Humano 3/fisiologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Proteínas do Envelope Viral/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo
4.
J Med Virol ; 96(6): e29690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804180

RESUMO

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Assuntos
Autofagia , Herpesvirus Humano 3 , Neurônios , Humanos , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Replicação Viral , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Interações Hospedeiro-Patógeno
5.
Mamm Genome ; 35(2): 296-307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600211

RESUMO

Varicella-zoster virus (VZV), a common pathogen with humans as the sole host, causes primary infection and undergoes a latent period in sensory ganglia. The recurrence of VZV is often accompanied by severe neuralgia in skin tissue, which has a serious impact on the life of patients. During the acute infection of VZV, there are few related studies on the pathophysiological mechanism of skin tissue. In this study, transcriptome sequencing data from the acute response period within 2 days of VZV antigen stimulation of the skin were used to explore a model of the trajectory of skin tissue changes during VZV infection. It was found that early VZV antigen stimulation caused activation of mainly natural immune-related signaling pathways, while in the late phase activation of mainly active immune-related signaling pathways. JAK-STAT, NFκB, and TNFα signaling pathways are gradually activated with the progression of infection, while Hypoxia is progressively inhibited. In addition, we found that dendritic cell-mediated immune responses play a dominant role in the lesion damage caused by VZV antigen stimulation of the skin. This study provides a theoretical basis for the study of the molecular mechanisms of skin lesions during acute VZV infection.


Assuntos
Herpesvirus Humano 3 , Transdução de Sinais , Pele , Infecção pelo Vírus da Varicela-Zoster , Herpesvirus Humano 3/genética , Pele/patologia , Pele/virologia , Pele/imunologia , Animais , Infecção pelo Vírus da Varicela-Zoster/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/genética , Infecção pelo Vírus da Varicela-Zoster/patologia , Humanos , Camundongos , Células Dendríticas/imunologia , Herpes Zoster/virologia , Herpes Zoster/patologia , Herpes Zoster/genética , Herpes Zoster/imunologia , Transcriptoma , Modelos Animais de Doenças , Antígenos Virais/imunologia , Antígenos Virais/genética , NF-kappa B/metabolismo , NF-kappa B/genética
6.
Biochem Biophys Res Commun ; 613: 41-46, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526487

RESUMO

Varicella-zoster virus (VZV) first infects hematopoietic cells, with the infected cells then acting to distribute the virus throughout the body. Sialic acid-binding immunoglobulin-like lectin (Siglec) family molecules recognize sialic acid-containing molecules on the same cell surface, called cis-ligands, or molecules on other cells or soluble agents, called trans-ligands. Among the Siglec family molecules, Siglec-4 and Siglec-7 mediate VZV infection through association with glycoprotein B (gB). As Siglec-7, but not Siglec-4, is expressed on hematopoietic cells such as monocytes, the regulatory mechanism by which Siglec-7 associates with gB is important to our understanding of VZV infection of blood cells. Here, we found that Siglec-7 is required for VZV to infect human primary monocytes. Furthermore, treatment of primary monocytes with sialidase enhanced both VZV gB binding to monocytes and VZV infectivity. Calcium influx in primary monocytes decreased the expression of Siglec-7 cis-ligands and increased VZV infectivity. These results demonstrate that the Siglec-7 cis-ligands present on primary monocytes play an important role in VZV infection through regulation of the interaction between gB and Siglec-7.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Herpesvirus Humano 3 , Lectinas , Monócitos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Herpesvirus Humano 3/fisiologia , Humanos , Lectinas/metabolismo , Ligantes , Monócitos/virologia , Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia
7.
J Ethnopharmacol ; 287: 114951, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34958877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Elaeocarpus sylvestris var. ellipticus (ES), a plant that grows in Taiwan, Japan, and Jeju Island in Korea. ES root bark, known as "sanduyoung," has long been used in traditional oriental medicine. ES is also traditionally used to treat anxiety, asthma, arthritis, stress, depression, palpitation, nerve pain, epilepsy, migraine, hypertension, liver diseases, diabetes, and malaria. However, lack of efficacy and mechanism studies on ES. AIM OF THE STUDY: In the present study, we aim to investigate the VZV-antiviral efficacy, pain suppression, and the anti-inflammatory and antipyretic effects of ES. METHODS: and methods: Inhibition of VZV was evaluated by hollow fiber assays. Analgesic and antipyretic experiments were conducted using ICR mice and SD Rats, and anti-inflammatory experiments were conducted using Raw264.7 cells. RESULTS: To evaluate the efficacy of ESE against VZV, we conducted antiviral tests. ESE inhibited cell death by disrupting virus and gene expression related to invasion and replication. In addition, ESE suppressed the pain response as measured by writhing and formalin tests and suppressed LPS-induced inflammatory fever. Further, ESE inhibited the phosphorylation of IκB and NF-κB in LPS-induced Raw264.7 cells and expression of COX-2, iNOS, IL-1ß, IL-6, and TNF-α. CONCLUSION: E. sylvestris shows potential as a source of medicine. ESE had a direct effect on VZV and an inhibitory effect on the pain and inflammation caused by VZV infection.


Assuntos
Antivirais/farmacologia , Elaeocarpaceae/química , Herpesvirus Humano 3/efeitos dos fármacos , Extratos Vegetais/farmacologia , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antipiréticos/isolamento & purificação , Antipiréticos/farmacologia , Antivirais/isolamento & purificação , Inflamação/tratamento farmacológico , Inflamação/virologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/tratamento farmacológico , Dor/virologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Infecção pelo Vírus da Varicela-Zoster/tratamento farmacológico , Infecção pelo Vírus da Varicela-Zoster/virologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34759019

RESUMO

BACKGROUND AND OBJECTIVES: Compared with stroke controls, patients with varicella zoster virus (VZV) vasculopathy have increased amyloid in CSF, along with increased amylin (islet amyloid polypeptide [IAPP]) and anti-VZV antibodies. Thus, we examined the gene expression profiles of VZV-infected primary human brain vascular adventitial fibroblasts (HBVAFs), one of the initial arterial cells infected in VZV vasculopathy, to determine whether they are a potential source of amyloid that can disrupt vasculature and potentiate inflammation. METHODS: Mock- and VZV-infected quiescent HBVAFs were harvested at 3 days postinfection. Targeted RNA sequencing of the whole-human transcriptome (BioSpyder Technologies, TempO-Seq) was conducted followed by gene set enrichment and pathway analysis. Selected pathways unique to VZV-infected cells were confirmed by enzyme-linked immunoassays, migration assays, and immunofluorescence analysis (IFA) that included antibodies against amylin and amyloid-beta, as well as amyloid staining by Thioflavin-T. RESULTS: Compared with mock, VZV-infected HBVAFs had significantly enriched gene expression pathways involved in vascular remodeling and vascular diseases; confirmatory studies showed secretion of matrix metalloproteinase-3 and -10, as well increased migration of infected cells and uninfected cells when exposed to conditioned media from VZV-infected cells. In addition, significantly enriched pathways involved in amyloid-associated diseases (diabetes mellitus, amyloidosis, and Alzheimer disease), tauopathy, and progressive neurologic disorder were identified; predicted upstream regulators included amyloid precursor protein, apolipoprotein E, microtubule-associated protein tau, presenilin 1, and IAPP. Confirmatory IFA showed that VZV-infected HBVAFs contained amyloidogenic peptides (amyloid-beta and amylin) and intracellular amyloid. DISCUSSION: Gene expression profiles and pathway enrichment analysis of VZV-infected HBVAFs, as well as phenotypic studies, reveal features of pathologic vascular remodeling (e.g., increased cell migration and changes in the extracellular matrix) that can contribute to cerebrovascular disease. Furthermore, the discovery of amyloid-associated transcriptional pathways and intracellular amyloid deposition in HBVAFs raise the possibility that VZV vasculopathy is an amyloid disease. Amyloid deposition may contribute to cell death and loss of vascular wall integrity, as well as potentiate chronic inflammation in VZV vasculopathy, with disease severity and recurrence determined by the host's ability to clear virus infection and amyloid deposition and by the coexistence of other amyloid-associated diseases (i.e., Alzheimer disease and diabetes mellitus).


Assuntos
Túnica Adventícia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cerebrovasculares , Fibroblastos , Infecção pelo Vírus da Varicela-Zoster , Remodelação Vascular , Túnica Adventícia/citologia , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Túnica Adventícia/virologia , Células Cultivadas , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/virologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Análise de Sequência de RNA , Transcriptoma/fisiologia , Infecção pelo Vírus da Varicela-Zoster/metabolismo , Infecção pelo Vírus da Varicela-Zoster/patologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Remodelação Vascular/fisiologia
9.
Front Immunol ; 12: 769653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737756

RESUMO

To determine whether there is a correlation between myelin oligodendrocyte glycoprotein (MOG) antibody-associated diseases and varicella zoster virus (VZV) infection. We provide a case report and performed a study to determine the frequency of MOG antibodies (MOG-IgG) in neurological VZV infections. Patients admitted to the Medical University of Innsbruck from 2008-2020 with a diagnosis of a neurological manifestation of VZV infection (n=59) were included in this study; patients with neuroborreliosis (n=34) served as control group. MOG-IgG was detected using live cell-based assays. In addition, we performed a literature review focusing on MOG and aquaporin-4 (AQP4) antibodies and their association with VZV infection. Our case presented with VZV-associated longitudinally extensive transverse myelitis and had MOG-IgG at a titer of 1:1280. In the study, we did not detect MOG-IgG in any other patient neither in the VZV group (including 15 with VZV encephalitis/myelitis) nor in the neuroborreliosis group. In the review of the literature, 3 cases with MOG-IgG and additional 9 cases with AQP4 IgG associated disorders in association with a VZV infection were identified. MOG-IgG are rarely detected in patients with VZV infections associated with neurological diseases.


Assuntos
Autoanticorpos/imunologia , Herpesvirus Humano 3/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Mielite Transversa/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Adulto , Idoso , Aquaporina 4/imunologia , Encefalite/diagnóstico , Encefalite/imunologia , Feminino , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Mielite Transversa/diagnóstico , Estudos Retrospectivos , Literatura de Revisão como Assunto , Infecção pelo Vírus da Varicela-Zoster/diagnóstico , Infecção pelo Vírus da Varicela-Zoster/virologia
10.
J Virol ; 95(22): e0122721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468169

RESUMO

Varicella-zoster virus (VZV) maintains lifelong latency in neurons following initial infection and can subsequently be reactivated to result in herpes zoster or severe neurological manifestations such as encephalitis. Mechanisms of VZV neuropathogenesis have been challenging to study due to the strict human tropism of the virus. Although neuronal entry mediators of other herpesviruses, including herpes simplex virus, have been identified, little is known regarding how VZV enters neurons. Here, we utilize a human stem cell-based neuronal model to characterize cellular factors that mediate entry. Through transcriptional profiling of infected cells, we identify the cell adhesion molecule nectin-1 as a candidate mediator of VZV entry. Nectin-1 is highly expressed in the cell bodies and axons of neurons. Either knockdown of endogenous nectin-1 or incubation with soluble forms of nectin-1 produced in mammalian cells results in a marked decrease in infectivity of neurons. Notably, while addition of soluble nectin-1 during viral infection inhibits infectivity, addition after infection has no effect on infectivity. Ectopic expression of human nectin-1 in a cell line resistant to productive VZV infection confers susceptibility to infection. In summary, we have identified nectin-1 as a neuronal entry mediator of VZV. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox, gains access to neurons during primary infection where it resides lifelong, and can later be reactivated. Reactivation is associated with shingles and postherpetic neuralgia, as well as with severe neurologic complications, including vasculitis and encephalitis. Although the varicella vaccine substantially decreases morbidity and mortality associated with primary infection, the vaccine cannot prevent the development of neuronal latency, and vaccinated populations are still at risk for reactivation. Furthermore, immunocompromised individuals are at higher risk for VZV reactivation and associated complications. Little is known regarding how VZV enters neurons. Here, we identify nectin-1 as an entry mediator of VZV in human neurons. Identification of nectin-1 as a neuronal VZV entry mediator could lead to improved treatments and preventative measures to reduce VZV related morbidity and mortality.


Assuntos
Herpesvirus Humano 3 , Nectinas/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Humanos , Células-Tronco Neurais , Internalização do Vírus
11.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459952

RESUMO

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Assuntos
COVID-19/enzimologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Calicreínas/metabolismo , SARS-CoV-2 , Viroses/enzimologia , Animais , Asma/etiologia , Coronavirus/genética , Coronavirus/patogenicidade , Coronavirus/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Orthomyxoviridae/fisiologia , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/virologia , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/enzimologia , Infecções por Picornaviridae/virologia , Processamento de Proteína Pós-Traducional , Proteólise , Rhinovirus/patogenicidade , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Infecção pelo Vírus da Varicela-Zoster/enzimologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroses/virologia , Internalização do Vírus
12.
PLoS Pathog ; 17(7): e1009689, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228767

RESUMO

Herpes zoster, the result of varicella-zoster virus (VZV) reactivation, is frequently complicated by difficult-to-treat chronic pain states termed postherpetic neuralgia (PHN). While there are no animal models of VZV-induced pain following viral reactivation, subcutaneous VZV inoculation of the rat causes long-term nocifensive behaviors indicative of mechanical and thermal hypersensitivity. Previous studies using UV-inactivated VZV in the rat model suggest viral gene expression is required for the development of pain behaviors. However, it remains unclear if complete infection processes are needed for VZV to induce hypersensitivity in this host. To further assess how gene expression and replication contribute, we developed and characterized three replication-conditional VZV using a protein degron system to achieve drug-dependent stability of essential viral proteins. Each virus was then assessed for induction of hypersensitivity in rats under replication permissive and nonpermissive conditions. VZV with a degron fused to ORF9p, a late structural protein that is required for virion assembly, induced nocifensive behaviors under both replication permissive and nonpermissive conditions, indicating that complete VZV replication is dispensable for the induction of hypersensitivity. This conclusion was confirmed by showing that a genetic deletion recombinant VZV lacking DNA packaging protein ORF54p still induced prolonged hypersensitivities in the rat. In contrast, VZV with a degron fused to the essential IE4 or IE63 proteins, which are involved in early gene regulation of expression, induced nocifensive behaviors only under replication permissive conditions, indicating importance of early gene expression events for induction of hypersensitivity. These data establish that while early viral gene expression is required for the development of nocifensive behaviors in the rat, complete replication is dispensable. We postulate this model reflects events leading to clinical PHN, in which a population of ganglionic neurons become abortively infected with VZV during reactivation and survive, but host signaling becomes altered in order to transmit ongoing pain.


Assuntos
Modelos Animais de Doenças , Neuralgia Pós-Herpética/virologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Replicação Viral/fisiologia , Animais , Herpesvirus Humano 3 , Masculino , Neurônios/virologia , Ratos , Ratos Sprague-Dawley
13.
Sci Rep ; 11(1): 13874, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230529

RESUMO

Varicella Zoster Virus (VZV) is endemic worldwide, causing varicella in children and zoster upon reactivation in adults. This study concerned a metagenomic analysis of a throat swab sample collected in China, on a young patient suffering from Systemic Lupus Erythematosus (SLE) and diagnosed with varicella. The complete genome sequence of a VZV strain of clade 2 has been generated. Clade 2 strains are the most prevalent in Asian countries. A comparison of 223 VZV genomes identified 77 clade specific markers, 20 of them specific to clade 2. The metagenomic analysis also identified sequences covering most of the genome of the bacteria Schaalia odontolytica also known as Actinomyces odontolyticus. VZV infection and bacterial infection in the context of SLE is further discussed. Even though the patient presented only mild symptoms, this study is a reminder that vaccination against VZV is critical to avoid severe complications like bacterial superinfection or even death in the case of immunodeficiency.


Assuntos
Herpesvirus Humano 3/fisiologia , Metagenômica , Faringe/virologia , Manejo de Espécimes , Infecção pelo Vírus da Varicela-Zoster/virologia , Criança , China , Feminino , Marcadores Genéticos , Genoma Viral , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
14.
Am J Surg Pathol ; 45(10): 1357-1363, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324455

RESUMO

Herpes viruses are known for infecting epithelial cells and manifesting as vesicles. However, herpes viruses can also infect stromal cells. While established in the ocular setting, cutaneous stromal herpes (deep herpes) is previously unreported and may evade clinical and microscopic detection. We searched for skin biopsies with herpes stromal disease. Clinical information was retrieved via electronic medical records and pathology records system. Hematoxylin and eosin slides, immunohistochemical staining, and polymerase chain reaction detection of viral DNA was performed. We identified 12 specimens from 10 patients with cutaneous stromal herpes simplex virus 1/2 (n=7) or varicella-zoster virus infection (n=5). The most common site involved was the buttocks/perianal region (n=6). Ulceration was a frequent dermatologic finding (n=8). Pyoderma gangrenosum was clinically suspected in 6 specimens (50%). Eight patients (80%) were immunosuppressed. Biopsies frequently demonstrated a dense dermal mixed inflammatory infiltrate with subcutaneous extension and enlarged cells with viral cytopathic changes confirmed by herpes simplex virus 1/2 or varicella-zoster virus immunohistochemistry (n=10) or polymerase chain reaction (n=2). Most specimens (67%) lacked evidence of characteristic epidermal keratinocyte infection. This study presents the first known report of the ability of herpes virus to infect deep stromal cells of the dermis. We raise awareness of cutaneous stromal herpes in patients presenting with atypical clinical lesions, particularly while immunocompromised. Establishing the correct diagnosis is critical for initiating therapy.


Assuntos
Derme/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/patogenicidade , Herpesvirus Humano 3/patogenicidade , Células Estromais/virologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Adolescente , Adulto , Idoso , Antivirais/uso terapêutico , DNA Viral/genética , Derme/efeitos dos fármacos , Derme/patologia , Feminino , Herpes Simples/diagnóstico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/genética , Herpesvirus Humano 3/efeitos dos fármacos , Herpesvirus Humano 3/genética , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Resultado do Tratamento , Infecção pelo Vírus da Varicela-Zoster/diagnóstico , Infecção pelo Vírus da Varicela-Zoster/tratamento farmacológico , Adulto Jovem
16.
Medicine (Baltimore) ; 100(16): e25351, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33879665

RESUMO

RATIONALE: Primary varicella-zoster virus (VZV) infection may be associated with hemophagocytic lymphohistiocytosis (HLH), as well as with acute pancreatitis. However, there is few data concerning the evolution and the optimal treatment of these rare associations. PATIENT CONCERNS: A 57-year-old immunocompromised woman, who was treated for chronic lymphocytic leukemia 3 years prior to admission, was hospitalized with abdominal pain revealing severe acute pancreatitis. The day after admission, a pruritic rash appeared on her face, trunk, and limbs, sparing the palmoplantar regions. At the same time, fever, thrombocytopenia (27 × 109/L), major hyperferritinemia (11,063 µg/mL), hypertriglyceridemia (2.56 mmol/L) and elevated lactate dehydrogenase levels (1441 IU/L) suggested HLH. DIAGNOSIS: The diagnosis of chickenpox (varicella) was established. Primary VZV infection was then confirmed: cutaneous and plasma VZV polymerase chain reactions were positives, VZV serology was negative for IgG. INTERVENTIONS: Treatment with aciclovir was started intravenously after the onset of the rash, for a total of 10 days. A 48-h surveillance in intensive care was carried out. OUTCOMES: Acute pancreatitis and biological abnormalities evolved favorably under aciclovir. Platelet count was normalized 6 days after admission to hospital. LESSONS: A favorable outcome of primary VZV infection associated with severe acute pancreatitis and probable HLH in an immunocompromised patient is possible with aciclovir alone.


Assuntos
Herpesvirus Humano 3/imunologia , Hospedeiro Imunocomprometido/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Pancreatite/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Doença Aguda , Feminino , Humanos , Linfo-Histiocitose Hemofagocítica/virologia , Pessoa de Meia-Idade , Pancreatite/virologia , Infecção pelo Vírus da Varicela-Zoster/virologia
17.
Clin Exp Immunol ; 205(1): 63-74, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33714219

RESUMO

Previous studies have demonstrated that the status of the T cell compartment and inflammation-related factors are associated with the immunogenicity of the varicella-zoster virus (VZV) vaccine in older adults; however, little is known about the roles of other immune cell subsets known to influence the generation and maintenance of immunological memory. Responses to a live-attenuated VZV vaccine were studied in relation to peripheral blood mononuclear cell (PBMC) composition and function in a sample of 30 nursing home residents (aged 80-99 years). Interferon-gamma enzyme-linked immunospot (ELISPOT) was used to measure VZV responses at baseline and 6 weeks following vaccination, and associations were sought with the frequencies of monocytes and T, B and natural killer (NK) cells and the production and secretion of cytokines following their ex-vivo stimulation with different agents. While only the frequency of interleukin (IL)-6+ CD14+ monocytes was inversely associated with post-vaccination VZV response, amounts of IL-1ß, IL-10, IL-17A and tumour necrosis factor (TNF) secreted by PBMCs and the frequency of IL-1ß+ CD14+ monocytes was positively correlated with pre-vaccination VZV response. Furthermore, both bivariate correlation and causal mediation analyses supported the notion that IL-1ß+ CD14+ monocytes were significant mediators of the associations between IL-1ß and TNF secretion by PBMCs and pre-vaccination VZV responses. Our findings implicate a strong cytokine response mediated by inflammatory IL-1ß+ monocytes in coordinating responses of long-lived VZV-reactive memory T cells, but with an opposing effect of IL-6+ CD14+ monocytes. Whether monocyte status promotes or inhibits the induction and/or maintenance of these memory T cells later in life has yet to be determined.


Assuntos
Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Interleucina-1beta/imunologia , Monócitos/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Citocinas/imunologia , Feminino , Herpes Zoster/virologia , Humanos , Memória Imunológica/imunologia , Inflamação/imunologia , Inflamação/virologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Casas de Saúde , Linfócitos T/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia
18.
Transplantation ; 105(10): 2316-2323, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528118

RESUMO

BACKGROUND: Immunization of varicella-zoster virus (VZV)-seronegative solid organ transplant (SOT) patients using the live-attenuated varicella vaccine is generally contraindicated, leaving no widely applicable immunization option. The recombinant subunit herpes zoster vaccine (RZV) is indicated for VZV-seropositive persons to prevent shingles but could potentially also protect VZV-seronegative persons against varicella. We performed a safety and immunogenicity evaluation of RZV in VZV-seronegative SOT recipients as an option for protection. METHODS: VZV-seronegative adult SOT patients with no history of varicella/shingles vaccine or disease were given 2 doses of RZV vaccine 2-6 mo apart. Blood was drawn prevaccination (V1), before the second dose (V2), and 4 wk after the second dose (V3). Humoral immunity (anti-glycoprotein E) and cell-mediated immunity were evaluated, with polyfunctional cells defined as cells producing ≥2 cytokines. RESULTS: Among 31 eligible VZV-seronegative SOT patients screened, 23 were enrolled. Median age was 38 y and median time since transplant procedure was 3.8 y. The most frequent transplant types were liver (35%) and lung (30%). Median anti-glycoprotein E levels significantly increased from V1 to V3 (P = 0.001) and V2 to V3 (P < 0.001), even though only 55% had a positive seroresponse. Median polyfunctional CD4 T-cell counts increased from V1 to V2 (54/106 versus 104/106 cells; P = 0.041) and from V2 to V3 (380/106; P = 0.002). Most adverse events were mild with no rejection episodes. CONCLUSIONS: RZV was safe and elicited significant humoral and cellular responses in VZV-seronegative SOT patients and has the potential to be considered as a preventive strategy against primary varicella.


Assuntos
Vacina contra Herpes Zoster/administração & dosagem , Herpesvirus Humano 3/imunologia , Imunogenicidade da Vacina , Transplante de Órgãos , Infecção pelo Vírus da Varicela-Zoster/prevenção & controle , Adulto , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Feminino , Vacina contra Herpes Zoster/efeitos adversos , Herpesvirus Humano 3/patogenicidade , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Masculino , Pessoa de Meia-Idade , Transplante de Órgãos/efeitos adversos , Estudo de Prova de Conceito , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Proteínas do Envelope Viral/imunologia
20.
Ocul Immunol Inflamm ; 29(2): 324-332, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31697212

RESUMO

Objectives: To explore the cellular morphological characteristics and changes in corneal endotheliitis among different viruses by in vivo confocal microscopy (IVCM).Methods: Corneal confocal images of 44 eyes of 44 patients with HSV, VZV, CMV and EBV corneal endotheliitis were studied retrospectively. Corneal confocal images of 44 normal eyes were used as controls.Results: The pathogens included cytomegalovirus (n = 20), herpes simplex virus (n = 8), varicella zoster virus (n = 10), and Epstein Barr virus (n = 6). There were no differences in the evaluated structures among the different viruses except for the lengths of the subbasal nerves and Langerhans cell densities. Deviations in endothelial cell layers were not significant among different viruses except for owl's eye morphology.Conclusion: ICVM can assist in diagnosing endotheliitis. The results demonstrate that changes in the cornea were not different among the various viruses except for owl's eye morphology, the lengths of the subbasal nerves and Langerhans cell densities.


Assuntos
Infecções por Citomegalovirus/diagnóstico , Endotélio Corneano/patologia , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções Oculares Virais/diagnóstico , Ceratite/diagnóstico , Microscopia Confocal/métodos , Infecção pelo Vírus da Varicela-Zoster/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/virologia , Contagem de Células , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , DNA Viral/análise , Endotélio Corneano/virologia , Infecções por Vírus Epstein-Barr/virologia , Infecções Oculares Virais/virologia , Feminino , Herpesvirus Humano 3/genética , Herpesvirus Humano 4/genética , Humanos , Ceratite/virologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Infecção pelo Vírus da Varicela-Zoster/virologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA