RESUMO
Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) with Methicillin-Resistant S. aureus (MRSA) strains being a major contributor in both community and hospital settings. S. aureus relies on metabolic diversity and a large repertoire of virulence factors to cause disease. This includes α-hemolysin (Hla), an integral player in tissue damage found in various models, including SSTIs. Previously, we identified a role for the Spx adapter protein, YjbH, in the regulation of several virulence factors and as an inhibitor of pathogenesis in a sepsis model. In this study, we found that YjbH is critical for tissue damage during SSTI, and its absence leads to decreased proinflammatory chemokines and cytokines in the skin. We identified no contribution of YjbI, encoded on the same transcript as YjbH. Using a combination of reporters and quantitative hemolysis assays, we demonstrated that YjbH impacts Hla expression and activity both in vitro and in vivo. Additionally, expression of Hla from a non-native promoter reversed the tissue damage phenotype of the ΔyjbIH mutant. Lastly, we identified reduced Agr activity as the likely cause for reduced Hla production in the ΔyjbH mutant. This work continues to define the importance of YjbH in the pathogenesis of S. aureus infection as well as identify a new pathway important for Hla production.
Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas , Staphylococcus aureus , Transativadores , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/imunologia , Staphylococcus aureus/genética , Camundongos , Animais , Transativadores/genética , Transativadores/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/imunologia , Pele/microbiologia , Pele/patologia , Pele/imunologia , Fatores de Virulência/genética , Humanos , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Citocinas/imunologia , Citocinas/genéticaRESUMO
The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1ß response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1ß and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.
Assuntos
Interleucina-1beta , Pele , Staphylococcus aureus , Staphylococcus epidermidis , Humanos , Interleucina-1beta/metabolismo , Pele/microbiologia , Pele/imunologia , Staphylococcus aureus/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/microbiologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Microbiota/imunologiaRESUMO
Staphylococcus aureus α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during S. aureus skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by S. aureus, and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of S. aureus-induced dermonecrosis.
Assuntos
Proteína ADAM10 , Toxinas Bacterianas , Caderinas , Proteínas Hemolisinas , Queratinócitos , Necrose , Staphylococcus aureus , Animais , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Camundongos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/patogenicidade , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Proteína ADAM10/metabolismo , Caderinas/metabolismo , Apoptose , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Proteínas de Membrana/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Pele/patologia , Pele/microbiologia , Feminino , Endotélio Vascular/patologia , Endotélio Vascular/microbiologia , Endotélio Vascular/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Staphylococcus aureus is responsible for the majority of skin and soft tissue infections, which are often diagnosed at a late stage, thereby impacting treatment efficacy. Our study was designed to reveal the physiological changes at different stages of infection by S. aureus through the combined analysis of variations in the skin microenvironment, providing insights for the diagnosis and treatment of S. aureus infections. METHODS: We established a murine model of skin and soft tissue infection with S. aureus as the infectious agent to investigate the differences in the microenvironment at different stages of infection. By combining analysis of the host immune status and histological observations, we elucidate the progression of S. aureus infection in mice. RESULTS: The results indicate that the infection process in mice can be divided into at least two stages: early infection (1-3 days post-infection) and late infection (5-7 days post-infection). During the early stage of infection, notable symptoms such as erythema and abundant exudate at the infection site were observed. Histological examination revealed infiltration of numerous neutrophils and bacterial clusters, accompanied by elevated levels of cytokines (IL-6, IL-10). There was a decrease in microbial alpha diversity within the microenvironment (Shannon, Faith's PD, Chao1, Observed species, Simpson, Pielou's E). In contrast, during the late stage of infection, a reduction or even absence of exudate was observed at the infected site, accompanied by the formation of scabs. Additionally, there was evidence of fibroblast proliferation and neovascularization. The levels of cytokines and microbial composition gradually returned to a healthy state. CONCLUSION: This study reveals synchrony between microbial composition and histological/immunological changes during S. aureus-induced SSTIs.
Assuntos
Infecções Cutâneas Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Infecções Cutâneas Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Pele/microbiologia , Pele/patologia , Feminino , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/imunologia , Modelos Animais de Doenças , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/patologia , Microambiente CelularRESUMO
BACKGROUND: The contribution of Staphylococcus aureus to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVES: This study sought to reappraise the main bacterial factors and underlying immune mechanisms by which S aureus triggers AD-like inflammation. METHODS: This study capitalized on a preclinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS: The development of S aureus-induced dermatitis depended on the nature of the S aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and nonsecreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor apoptosis-associated speck-like protein containing a CARD domain- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S aureus, and an accumulation of S aureus-specific γδ and CD4+ tissue resident memory T cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis on new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSIONS: These data highlight the induction of unique AD-like inflammation, with the generation of proinflammatory but protective tissue resident memory T cells in a context of natural exposure to pathogenic S aureus strains.
Assuntos
Dermatite Atópica , Células T de Memória , Pele , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Staphylococcus aureus/imunologia , Camundongos , Pele/imunologia , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/imunologia , Células T de Memória/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino , Citocinas/metabolismo , Citocinas/imunologia , Exacerbação dos Sintomas , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologiaRESUMO
Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.
Assuntos
Dermatite Atópica , Infecções Cutâneas Estafilocócicas , Staphylococcus aureus , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Humanos , Staphylococcus aureus/imunologia , Criança , Feminino , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Masculino , Pré-Escolar , Pele/microbiologia , Pele/imunologia , Pele/patologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Células Th17/imunologia , Teorema de Bayes , Linfócitos T CD8-Positivos/imunologia , Interleucina-10/metabolismo , Interleucina-10/imunologia , Linfócitos Intraepiteliais/imunologia , Antígenos de Diferenciação de Linfócitos T , Glicoproteínas de MembranaRESUMO
The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.
Assuntos
Quimiocinas , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular , Queratinócitos , Receptores de Quimiocinas , Staphylococcus aureus , Animais , Queratinócitos/imunologia , Queratinócitos/metabolismo , Staphylococcus aureus/imunologia , Quimiocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/patologia , Infecções Estafilocócicas/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pele/imunologia , Pele/patologia , Pele/microbiologia , Camundongos KnockoutRESUMO
Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.
Assuntos
Toxinas Bacterianas/imunologia , Linfócitos/imunologia , Infiltração de Neutrófilos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Feminino , Humanos , Microscopia Intravital/métodos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/patogenicidade , Fatores de VirulênciaRESUMO
Superficial cutaneous Staphylococcus aureus (S. aureus) infection in humans can lead to soft tissue infection, an important cause of morbidity and mortality. IL-17A production by skin TCRγδ+ cells in response to IL-1 and IL-23 produced by epithelial and immune cells is important for restraining S. aureus skin infection. How S. aureus evades this cutaneous innate immune response to establish infection is not clear. Here we show that mechanical injury of mouse skin by tape stripping predisposed mice to superficial skin infection with S. aureus. Topical application of S. aureus to tape-stripped skin caused cutaneous influx of basophils and increased Il4 expression. This basophil-derived IL-4 inhibited cutaneous IL-17A production by TCRγδ+ cells and promoted S. aureus infection of tape-stripped skin. We demonstrate that IL-4 acted on multiple checkpoints that suppress the cutaneous IL-17A response. It reduced Il1 and Il23 expression by keratinocytes, inhibited IL-1+IL-23-driven IL-17A production by TCRγδ+ cells, and impaired IL-17A-driven induction of neutrophil-attracting chemokines by keratinocytes. IL-4 receptor blockade is shown to promote Il17a expression and enhance bacterial clearance in tape-stripped mouse skin exposed to S. aureus, suggesting that it could serve as a therapeutic approach to prevent skin and soft tissue infection.
Assuntos
Basófilos/metabolismo , Interleucina-4/efeitos adversos , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Animais , Humanos , Imunidade Inata , Camundongos , Infecções Estafilocócicas/fisiopatologia , Infecções Cutâneas Estafilocócicas/fisiopatologiaRESUMO
Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines, CCL1, CCL17, CCL19, CCL2, CCL22, CXCL14 and CXCL2, which mediate both antimicrobial and inflammatory responses. Of these, CCL22 was detected in seven of nine transcriptomes and by PCR in cultured LCs. Overall, the antimicrobial genes identified in LCs encode proteins with broad antibacterial activity, including against Staphylococcus aureus, which is the leading cause of skin infections. Thus, this study illustrates that LCs, consistent with their anatomical location, are programmed to mount an antimicrobial response against invading pathogens in skin.
Assuntos
Peptídeos Antimicrobianos/genética , Epiderme/metabolismo , Células de Langerhans/metabolismo , Infecções Cutâneas Estafilocócicas/genética , Staphylococcus aureus/patogenicidade , Transcriptoma , Células Cultivadas , Bases de Dados Genéticas , Epiderme/imunologia , Epiderme/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Células de Langerhans/imunologia , Células de Langerhans/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/imunologiaRESUMO
RATIONALE: Ecthyma gangrenosum (EG) is an uncommon cutaneous infection usually associated with Pseudomonas aeruginosa bacteremia in immunocompromised patients, particularly those with underlying malignant diseases. Despite its rarity, especially in immunocompetent or nondiagnosed immunodeficiency patients, EG can present as the first manifestation of an underlying immunosuppression. PATIENT CONCERNS: A 42-year-old Japanese man was admitted to our hospital with a 3-day history of a painless red macule on his right forearm and fever. DIAGNOSES: Blood culture on admission revealed the presence of Pseudomonas aeruginosa, whereas pus culture of the skin lesion showed Pseudomonas aeruginosa and methicillin-susceptible Staphylococcus aureus positivity. INTERVENTIONS: Additional bone marrow aspirate examination and immunophenotyping were performed to confirm the diagnosis of acute promyelocytic leukaemia with PML-retinoic acid alpha receptor. OUTCOMES: The patient was successfully treated with a 14-day course of antibiotics, and no evidence of relapse was noted. The patient achieved complete remission after treatment for acute promyelocytic leukaemia. LESSONS: It should be kept in mind that EG is an important cutaneous infection that is typically associated with P aeruginosa bacteremia and the presence of underlying immunodeficiency, such as acute leukaemia.
Assuntos
Coinfecção/imunologia , Leucemia Promielocítica Aguda/diagnóstico , Infecções por Pseudomonas/imunologia , Pioderma Gangrenoso/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Adulto , Antibacterianos/uso terapêutico , Medula Óssea/patologia , Coinfecção/diagnóstico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Quimioterapia Combinada , Antebraço , Humanos , Hospedeiro Imunocomprometido , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/imunologia , Masculino , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/isolamento & purificação , Pioderma Gangrenoso/diagnóstico , Pioderma Gangrenoso/tratamento farmacológico , Pioderma Gangrenoso/microbiologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/diagnóstico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Resultado do TratamentoRESUMO
Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.
Assuntos
Reinfecção/prevenção & controle , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Feminino , Imunização , Imunogenicidade da Vacina , Masculino , Camundongos Endogâmicos BALB C , Coelhos , Reinfecção/imunologia , Reinfecção/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/imunologiaRESUMO
The skin innate immune response to methicillin-resistant Staphylococcus aureus (MRSA) culminates in the formation of an abscess to prevent bacterial spread and tissue damage. Pathogen recognition receptors (PRRs) dictate the balance between microbial control and injury. Therefore, intracellular brakes are of fundamental importance to tune the appropriate host defense while inducing resolution. The intracellular inhibitor suppressor of cytokine signaling 1 (SOCS-1), a known JAK/STAT inhibitor, prevents the expression and actions of PRR adaptors and downstream effectors. Whether SOCS-1 is a molecular component of skin host defense remains to be determined. We hypothesized that SOCS-1 decreases type I interferon production and IFNAR-mediated antimicrobial effector functions, limiting the inflammatory response during skin infection. Our data show that MRSA skin infection enhances SOCS-1 expression, and both SOCS-1 inhibitor peptide-treated and myeloid-specific SOCS-1 deficient mice display decreased lesion size, bacterial loads, and increased abscess thickness when compared to wild-type mice treated with the scrambled peptide control. SOCS-1 deletion/inhibition increases phagocytosis and bacterial killing, dependent on nitric oxide release. SOCS-1 inhibition also increases the levels of type I and type II interferon levels in vivo. IFNAR deletion and antibody blockage abolished the beneficial effects of SOCS-1 inhibition in vivo. Notably, we unveiled that hyperglycemia triggers aberrant SOCS-1 expression that correlates with decreased overall IFN signatures in the infected skin. SOCS-1 inhibition restores skin host defense in the highly susceptible hyperglycemic mice. Overall, these data demonstrate a role for SOCS-1-mediated type I interferon actions in host defense and inflammation during MRSA skin infection.
Assuntos
Interferon Tipo I/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Animais , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismoRESUMO
The staphylococcal α-hemolysin is critical for the pathogenesis of Staphylococcus aureus skin and soft tissue infection. Vaccine and infection-elicited α-hemolysin-specific antibodies protect against S. aureusâinduced dermonecrosis, a key feature of skin and soft tissue infection. Many interactions between α-hemolysin and host cells have been identified that promote tissue damage and modulate immune responses, but the mechanisms by which protective adaptive responses cross talk with innate responses at the tissue level are not clear. Using an established mouse model of skin and soft tissue infection and a newly developed histopathologic scoring system, we observed pathologic correlates early after infection, predicting protection against dermonecrosis by anti-α-hemolysin antibody. Protection was characterized by robust neutrophilic inflammation and compartmentalization of bacteria into discrete abscesses, which led to the attenuation of dermonecrosis and enhancement of bacterial clearance later in the infection. The ultimate outcome of infection was driven by the recruitment of neutrophils within the first day after infection but not later. Antibody-mediated protection was dependent on toxin neutralization rather than on enhanced opsonophagocytic killing by neutrophils or protection against toxin-mediated neutrophil lysis. Together, these findings advance our understanding of the mechanisms by which the early synergism between antibody-mediated toxin neutralization and tissue-specific neutrophilic inflammation preserve tissue integrity during infection.
Assuntos
Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/imunologia , Proteínas Hemolisinas/imunologia , Neutrófilos/imunologia , Pele/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Animais , Anticorpos Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Imunização Passiva/métodos , Camundongos , Necrose/imunologia , Necrose/microbiologia , Necrose/patologia , Infiltração de Neutrófilos , Cultura Primária de Células , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/imunologiaRESUMO
Perforin-2 (P-2) is an antimicrobial protein with unique properties to kill intracellular bacteria. Gamma delta (GD) T cells, as the major T cell population in epithelial tissues, play a central role in protective and pathogenic immune responses in the skin. However, the tissue-specific mechanisms that control the innate immune response and the effector functions of GD T cells, especially the cross-talk with commensal organisms, are not very well understood. We hypothesized that the most prevalent skin commensal microorganism, Staphylococcus epidermidis, may play a role in regulating GD T cell-mediated cutaneous responses. We analyzed antimicrobial protein P-2 expression in human skin at a single cell resolution using an amplified fluorescence in situ hybridization approach to detect P-2 mRNA in combination with immunophenotyping. We show that S. epidermidis activates GD T cells and upregulates P-2 in human skin ex vivo in a cell-specific manner. Furthermore, P-2 upregulation following S. epidermidis stimulation correlates with increased ability of skin cells to kill intracellular Staphylococcus aureus. Our findings are the first to reveal that skin commensal bacteria induce P-2 expression, which may be utilized beneficially to modulate host innate immune responses and protect from skin infections.
Assuntos
Imunidade Inata , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/metabolismo , Staphylococcus epidermidis/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Biomarcadores , Citocinas/metabolismo , Citotoxicidade Imunológica , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Proteínas Citotóxicas Formadoras de Poros/genética , Infecções Cutâneas Estafilocócicas/microbiologiaRESUMO
Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.
Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologiaRESUMO
Staphylococcus aureus (S. aureus) is a common colonizer of healthy skin and mucous membranes. At the same time, S. aureus is the most frequent cause of skin and soft tissue infections. Dermal macrophages (Mφ) are critical for the coordinated defense against invading S. aureus, yet they have a limited life span with replacement by bone marrow derived monocytes. It is currently poorly understood whether localized S. aureus skin infections persistently alter the resident Mφ subset composition and resistance to a subsequent infection. In a strictly dermal infection model we found that mice, which were previously infected with S. aureus, showed faster monocyte recruitment, increased bacterial killing and improved healing upon a secondary infection. However, skin infection decreased Mφ half-life, thereby limiting the duration of memory. In summary, resident dermal Mφ are programmed locally, independently of bone marrow-derived monocytes during staphylococcal skin infection leading to transiently increased resistance against a second infection.
Assuntos
Imunidade Inata , Memória Imunológica , Macrófagos/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Infecções Cutâneas Estafilocócicas/microbiologiaRESUMO
Background: Vaccination provides an alternative to antibiotics in addressing drug-resistant Staphylococcus aureus (S. aureus) infection. However, vaccine potency is often limited by a lack of antigenic breadth and a demand on the generation of antibody responses alone. Methods: In this study, bacterial extracellular vesicles (EVs) coating indocyanine green (ICG)-loaded magnetic mesoporous silica nanoparticles (MSN) were constructed as multi-antigenic vaccines (EV/ICG/MSN) with the ability to modulate antigen presentation pathways in dendritic cells (DCs) to induce cellular immune responses. Results: Exposing the EV/ICG/MSNs to a laser could promote DC maturation and enhance the proteasome-dependent antigen presentation pathway by facilitating endolysosomal escape, improving proteasome activity, and elevating MHC-I expression. Immunization by EV/ICG/MSNs with laser irradiation in vivo triggered improved CD8+ T cell responses while maintaining CD4+ T cell responses and humoral immunity. In addition, in vivo tracking data revealed that the vaccine could be efficiently transported from the injection site into lymph nodes. Skin infection experiments showed that the vaccine not only prevented and treated superficial infection but also decreased bacterial invasiveness, thus strongly suggesting that EV/ICG/MSNs were effective in preventing complications resulting from the introduction of S. aureus infections. Conclusion: This multi-antigenic nanovaccine-based modulation of antigen presentation pathways provides an effective strategy against drug-resistant S. aureus infection.
Assuntos
Portadores de Fármacos/química , Vesículas Extracelulares/imunologia , Infecções Cutâneas Estafilocócicas/terapia , Vacinas Antiestafilocócicas/administração & dosagem , Staphylococcus aureus/imunologia , Animais , Apresentação de Antígeno , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/imunologia , Humanos , Imunidade Celular , Masculino , Camundongos , Nanopartículas/química , Dióxido de Silício/química , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/genética , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
The pore-forming cytotoxin α-hemolysin, or Hla, is a critical Staphylococcus aureus virulence factor that promotes infection by causing tissue damage, excessive inflammation, and lysis of both innate and adaptive immune cells, among other cellular targets. In this study, we asked whether a virus-like particle (VLP)-based vaccine targeting Hla could attenuate S. aureus Hla-mediated pathogenesis. VLPs are versatile vaccine platforms that can be used to display target antigens in a multivalent array, typically resulting in the induction of high titer, long-lasting antibody responses. In the present study, we describe the first VLP-based vaccines that target Hla. Vaccination with either of two VLPs displaying a 21 amino-acid linear neutralizing domain (LND) of Hla protected both male and female mice from subcutaneous Hla challenge, evident by reduction in lesion size and neutrophil influx to the site of intoxication. Antibodies elicited by VLP-LND vaccination bound both the LND peptide and the native toxin, effectively neutralizing Hla and preventing toxin-mediated lysis of target cells. We anticipate these novel and promising vaccines being part of a multi-component S. aureus vaccine to reduce severity of S. aureus infection.
Assuntos
Toxinas Bacterianas/farmacologia , Vacinas Bacterianas/farmacologia , Proteínas Hemolisinas/farmacologia , Pele/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Animais , Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Modelos Animais de Doenças , Epitopos , Feminino , Proteínas Hemolisinas/imunologia , Humanos , Imunogenicidade da Vacina , Células Jurkat , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Pele/imunologia , Pele/microbiologia , Pele/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Vacinação , Vacinas de Partículas Semelhantes a Vírus/imunologiaRESUMO
Staphylococcus aureus is a major human pathogen, and the emergence of antibiotic-resistant strains is making all types of S. aureus infections more challenging to treat. With a pressing need to develop alternative control strategies to use alongside or in place of conventional antibiotics, one approach is the targeting of established virulence factors. However, attempts at this have had little success to date, suggesting that we need to better understand how this pathogen causes disease if effective targets are to be identified. To address this, using a functional genomics approach, we have identified a small membrane-bound protein that we have called MspA. Inactivation of this protein results in the loss of the ability of S. aureus to secrete cytolytic toxins, protect itself from several aspects of the human innate immune system, and control its iron homeostasis. These changes appear to be mediated through a change in the stability of the bacterial membrane as a consequence of iron toxicity. These pleiotropic effects on the ability of the pathogen to interact with its host result in significant impairment in the ability of S. aureus to cause infection in both a subcutaneous and sepsis model of infection. Given the scale of the effect the inactivation of MspA causes, it represents a unique and promising target for the development of a novel therapeutic approach.