Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Infect Genet Evol ; 116: 105525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956745

RESUMO

The immunogenetics of wildlife populations influence the epidemiology and evolutionary dynamic of the host-pathogen system. Profiling immune gene diversity present in wildlife may be especially important for those species that, while not at risk of disease or extinction themselves, are host to diseases that are a threat to humans, other wildlife, or livestock. Hantaviruses (genus: Orthohantavirus) are globally distributed zoonotic RNA viruses with pathogenic strains carried by a diverse group of rodent hosts. The marsh rice rat (Oryzomys palustris) is the reservoir host of Orthohantavirus bayoui, a hantavirus that causes fatal cases of hantavirus cardiopulmonary syndrome in humans. We performed a genome wide association study (GWAS) using the rice rat "immunome" (i.e., all exons related to the immune response) to identify genetic variants associated with infection status in wild-caught rice rats naturally infected with their endemic strain of hantavirus. First, we created an annotated reference genome using 10× Chromium Linked Reads sequencing technology. This reference genome was used to create custom baits which were then used to target enrich prepared rice rat libraries (n = 128) and isolate their immunomes prior to sequencing. Top SNPs in the association test were present in four genes (Socs5, Eprs, Mrc1, and Il1f8) which have not been previously implicated in hantavirus infections. However, these genes correspond with other loci or pathways with established importance in hantavirus susceptibility or infection tolerance in reservoir hosts: the JAK/STAT, MHC, and NFκB. These results serve as informative markers for future exploration and highlight the importance of immune pathways that repeatedly emerge across hantavirus systems. Our work aids in creating cross-species comparisons for better understanding mechanisms of genetic susceptibility and host-pathogen coevolution in hantavirus systems.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Humanos , Ratos , Estudo de Associação Genômica Ampla , Infecções por Hantavirus/genética , Infecções por Hantavirus/veterinária , Infecções por Hantavirus/epidemiologia , Orthohantavírus/genética , Sigmodontinae , Roedores/genética , Inflamação , Animais Selvagens/genética , Reservatórios de Doenças
2.
Viruses ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458553

RESUMO

Acute kidney injury (AKI) with proteinuria is a hallmark of infections with Eurasian orthohantaviruses. Different kidney cells are identified as target cells of hantaviruses. Mesangial cells may play a central role in the pathogenesis of AKI by regulation of inflammatory mediators and signaling cascades. Therefore, we examined the characteristics of hantavirus infection on human renal mesangial cells (HRMCs). Receptor expression and infection with pathogenic Puumala virus (PUUV) and low-pathogenic Tula virus (TULV) were explored. To analyze changes in protein expression in infected mesangial cells, we performed a proteome profiler assay analyzing 38 markers of kidney damage. We compared the proteome profile of in vitro-infected HRMCs with the profile detected in urine samples of 11 patients with acute hantavirus infection. We observed effective productive infection of HRMCs with pathogenic PUUV, but only poor abortive infection for low-pathogenic TULV. PUUV infection resulted in the deregulation of proteases, adhesion proteins, and cytokines associated with renal damage. The urinary proteome profile of hantavirus patients demonstrated also massive changes, which in part correspond to the alterations observed in the in vitro infection of HRMCs. The direct infection of mesangial cells may induce a local environment of signal mediators that contributes to AKI in hantavirus infection.


Assuntos
Injúria Renal Aguda , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Células Mesangiais , Orthohantavírus , Virus Puumala , Feminino , Orthohantavírus/fisiologia , Infecções por Hantavirus/complicações , Infecções por Hantavirus/genética , Febre Hemorrágica com Síndrome Renal/complicações , Humanos , Masculino , Células Mesangiais/metabolismo , Proteoma , Virus Puumala/fisiologia
3.
J Virol ; 95(23): e0153421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549977

RESUMO

Sin Nombre orthohantavirus (SNV), a negative-sense, single-stranded RNA virus that is carried and transmitted by the North American deer mouse Peromyscus maniculatus, can cause infection in humans through inhalation of aerosolized excreta from infected rodents. This infection can lead to hantavirus cardiopulmonary syndrome (HCPS), which has an ∼36% case-fatality rate. We used reverse transcriptase quantitative PCR (RT-qPCR) to confirm SNV infection in a patient and identified SNV in lung tissues in wild-caught rodents from potential sites of exposure. Using viral whole-genome sequencing (WGS), we identified the likely site of transmission and discovered SNV in multiple rodent species not previously known to carry the virus. Here, we report, for the first time, the use of SNV WGS to pinpoint a likely site of human infection and identify SNV simultaneously in multiple rodent species in an area of known host-to-human transmission. These results will impact epidemiology and infection control for hantaviruses by tracing zoonotic transmission and investigating possible novel host reservoirs. IMPORTANCE Orthohantaviruses cause severe disease in humans and can be lethal in up to 40% of cases. Sin Nombre orthohantavirus (SNV) is the main cause of hantavirus disease in North America. In this study, we sequenced SNV from an infected patient and wild-caught rodents to trace the location of infection. We also discovered SNV in rodent species not previously known to carry SNV. These studies demonstrate for the first time the use of virus sequencing to trace the transmission of SNV and describe infection in novel rodent species.


Assuntos
Reservatórios de Doenças/virologia , Síndrome Pulmonar por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/veterinária , Síndrome Pulmonar por Hantavirus/virologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , Roedores/virologia , Vírus Sin Nombre , Animais , Anticorpos Antivirais , Sequência de Bases , Feminino , Orthohantavírus/genética , Infecções por Hantavirus/genética , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/veterinária , Síndrome Pulmonar por Hantavirus/epidemiologia , Humanos , Pulmão , Masculino , Camundongos , América do Norte , Peromyscus/virologia , Prevalência , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Vírus Sin Nombre/genética , População Branca , Sequenciamento Completo do Genoma
4.
Cell Rep ; 35(5): 109086, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951434

RESUMO

New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV). Most SNV-reactive antibodies show broad recognition and cross-neutralization of both New and Old World hantaviruses, while many ANDV-reactive antibodies show activity for ANDV only. mAbs ANDV-44 and SNV-53 compete for binding to a distinct site on the ANDV surface glycoprotein and show potently neutralizing activity to New and Old World hantaviruses. Four mAbs show therapeutic efficacy at clinically relevant doses in hamsters. These studies reveal a convergent and potently neutralizing human antibody response to NWHs and suggest therapeutic potential for human mAbs against HCPS.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Hantavirus/genética , Orthohantavírus/patogenicidade , Animais , Cricetinae , Infecções por Hantavirus/mortalidade , Humanos , Análise de Sobrevida
5.
Cell Rep Med ; 2(3): 100220, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763658

RESUMO

Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Infecções por Hantavirus/imunologia , Febre Hemorrágica com Síndrome Renal/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Virus Puumala/patogenicidade , Adulto , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/virologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Regulação da Expressão Gênica , Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/genética , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Imunofenotipagem , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/virologia , Células T Invariantes Associadas à Mucosa/virologia , Virus Puumala/imunologia , Índice de Gravidade de Doença
6.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321811

RESUMO

The small messenger RNA (SmRNA) of the Andes orthohantavirus (ANDV), a rodent-borne member of the Hantaviridae family of viruses of the Bunyavirales order, encodes a multifunctional nucleocapsid (N) protein and for a nonstructural (NSs) protein of unknown function. We have previously shown the expression of the ANDV-NSs, but only in infected cell cultures. In this study, we extend our early findings by confirming the expression of the ANDV-NSs protein in the lungs of experimentally infected golden Syrian hamsters. Next, we show, using a virus-free system, that the ANDV-NSs protein antagonizes the type I interferon (IFN) induction pathway by suppressing signals downstream of the melanoma differentiation-associated protein 5 (MDA5) and the retinoic acid-inducible gene 1 (RIG-I) and upstream of TBK1. Consistent with this observation, the ANDV-NSs protein antagonized mitochondrial antiviral-signaling protein (MAVS)-induced IFN-ß, NF-κB, IFN-regulatory factor 3 (IRF3), and IFN-sensitive response element (ISRE) promoter activity. Results demonstrate that ANDV-NSs binds to MAVS in cells without disrupting the MAVS-TBK-1 interaction. However, in the presence of the ANDV-NSs ubiquitination of MAVS is reduced. In summary, this study provides evidence showing that the ANDV-NSs protein acts as an antagonist of the cellular innate immune system by suppressing MAVS downstream signaling by a yet not fully understand mechanism. Our findings reveal new insights into the molecular regulation of the hosts' innate immune response by the Andes orthohantavirus.IMPORTANCEAndes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is distinguished from other hantaviruses by its unique ability to spread from person to person. In a previous report, we identified a novel ANDV protein, ANDV-NSs. Until now, ANDV-NSs had no known function. In this new study, we established that ANDV-NSs acts as an antagonist of cellular innate immunity, the first line of defense against invading pathogens, hindering the cellular antiviral response during infection. This study provides novel insights into the mechanisms used by ANDV to establish its infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Orthohantavírus/genética , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Infecções por Hantavirus/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon beta/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Células Vero , Proteínas não Estruturais Virais/metabolismo
7.
Virus Genes ; 55(6): 848-853, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31573059

RESUMO

Vole-associated hantaviruses occur in the Old and New World. Tula orthohantavirus (TULV) is widely distributed throughout the European continent in its reservoir, the common vole (Microtus arvalis), but the virus was also frequently detected in field voles (Microtus agrestis) and other vole species. TULV and common voles are absent from Great Britain. However, field voles there harbor Tatenale and Kielder hantaviruses. Here we screened 126 field voles and 13 common voles from Brandenburg, Germany, for hantavirus infections. One common vole and four field voles were anti-TULV antibody and/or TULV RNA positive. In one additional, seropositive field vole a novel hantavirus sequence was detected. The partial S and L segment nucleotide sequences were only 61.1% and 75.6% identical to sympatrically occurring TULV sequences, but showed highest similarity of approximately 80% to British Tatenale and Kielder hantaviruses. Subsequent determination of the entire nucleocapsid (N), glycoprotein (GPC), and RNA-dependent RNA polymerase encoding sequences and determination of the pairwise evolutionary distance (PED) value for the concatenated N and GPC amino acid sequences confirmed a novel orthohantavirus species, tentatively named Traemmersee orthohantavirus. The identification of this novel hantavirus in a field vole from eastern Germany underlines the necessity of a large-scale, broad geographical hantavirus screening of voles to understand evolutionary processes of virus-host associations and host switches.


Assuntos
Arvicolinae/virologia , Infecções por Hantavirus/genética , Orthohantavírus/genética , Sequência de Aminoácidos , Animais , Arvicolinae/genética , Alemanha , Orthohantavírus/patogenicidade , Infecções por Hantavirus/virologia , Especificidade de Hospedeiro/genética , Humanos , Nucleocapsídeo/genética , Filogenia , Vírus de RNA/genética , RNA Viral/genética , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
8.
J Gen Virol ; 100(8): 1208-1221, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31268416

RESUMO

The family Hantaviridae mostly comprises rodent-borne segmented negative-sense RNA viruses, many of which are capable of causing devastating disease in humans. In contrast, hantavirus infection of rodent hosts results in a persistent and inapparent infection through their ability to evade immune detection and inhibit apoptosis. In this study, we used Tula hantavirus (TULV) to investigate the interplay between viral and host apoptotic responses during early, peak and persistent phases of virus infection in cell culture. Examination of early-phase TULV infection revealed that infected cells were refractory to apoptosis, as evidenced by the complete lack of cleaved caspase-3 (casp-3C) staining, whereas in non-infected bystander cells casp-3C was highly abundant. Interestingly, at later time points, casp-3C was abundant in infected cells, but the cells remained viable and able to continue shedding infectious virus, and together these observations were suggestive of a TULV-associated apoptotic block. To investigate this block, we viewed TULV-infected cells using laser scanning confocal and wide-field deconvolution microscopy, which revealed that TULV nucleocapsid protein (NP) colocalized with, and sequestered, casp-3C within cytoplasmic ultrastructures. Consistent with casp-3C colocalization, we showed for the first time that TULV NP was cleaved in cells and that TULV NP and casp-3C could be co-immunoprecipitated, suggesting that this interaction was stable and thus unlikely to be solely confined to NP binding as a substrate to the casp-3C active site. To account for these findings, we propose a novel mechanism by which TULV NP inhibits apoptosis by spatially sequestering casp-3C from its downstream apoptotic targets within the cytosol.


Assuntos
Apoptose , Caspase 3/metabolismo , Infecções por Hantavirus/enzimologia , Proteínas do Nucleocapsídeo/metabolismo , Orthohantavírus/metabolismo , Animais , Caspase 3/genética , Citosol/enzimologia , Citosol/virologia , Orthohantavírus/genética , Infecções por Hantavirus/genética , Infecções por Hantavirus/fisiopatologia , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas do Nucleocapsídeo/genética , Ligação Proteica
9.
Viruses ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349540

RESUMO

Andes orthohantavirus (ANDV) is an important human pathogen causing hantavirus cardiopulmonary syndrome (HCPS) with a fatality rate of 30% in Chile. Around 60% of all cases have a severe clinical course, while the others have a mild clinical course. The main goal of this study was to understand if the genetic variation of patients is associated with the clinical course they develop after ANDV infection. For this, the frequency of copy number variants (CNVs, i.e., deletions and duplications) was studied in 195 patients, 88 with mild and 107 with severe HCPS. CNVs were called from intensity data of the Affymetrix Genome-Wide SNP Array 6.0. The analysis of the data was performed with PennCNV, ParseCNV and R softwares; Results: a deletion of 19, 416 bp in the q31.3 region of chromosome 1 is found more frequently in severe patients (p < 0.05). This region contains Complement Factor H Related (CFHR1) and CFHR3 genes, regulators of the complement cascade. A second deletion of 1.81 kb located in the p13 region of chr20 was significantly more frequent in mild patients (p < 0.05). This region contains the SIRPB1 gene, which participates in the innate immune response, more specifically in neutrophil trans-epithelial migration. Both deletions are associated with the clinical course of HCPS, the first being a risk factor and the second being protective. The participation of genes contained in both deletions in ANDV infection pathophysiology deserves further investigation.


Assuntos
Predisposição Genética para Doença , Infecções por Hantavirus/genética , Infecções por Hantavirus/imunologia , Imunidade Inata/genética , Deleção de Sequência , Idoso , Chile , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Variações do Número de Cópias de DNA , Feminino , Variação Genética , Genótipo , Orthohantavírus , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Prospectivos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
10.
Virology ; 531: 57-68, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852272

RESUMO

Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.


Assuntos
Endocitose , Células Epiteliais/virologia , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Mucosa Respiratória/virologia , Internalização do Vírus , Linhagem Celular , Células Epiteliais/enzimologia , Orthohantavírus/genética , Infecções por Hantavirus/enzimologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Mucosa Respiratória/metabolismo
11.
PLoS Biol ; 17(2): e3000142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30785873

RESUMO

The diversity of viruses probably exceeds biodiversity of eukaryotes, but little is known about the origin and emergence of novel virus species. Experimentation and disease outbreak investigations have allowed the characterization of rapid molecular virus adaptation. However, the processes leading to the establishment of functionally distinct virus taxa in nature remain obscure. Here, we demonstrate that incipient speciation in a natural host species has generated distinct ecological niches leading to adaptive isolation in an RNA virus. We found a very strong association between the distributions of two major phylogenetic clades in Tula orthohantavirus (TULV) and the rodent host lineages in a natural hybrid zone of the European common vole (Microtus arvalis). The spatial transition between the virus clades in replicated geographic clines is at least eight times narrower than between the hybridizing host lineages. This suggests a strong barrier for effective virus transmission despite frequent dispersal and gene flow among local host populations, and translates to a complete turnover of the adaptive background of TULV within a few hundred meters in the open, unobstructed landscape. Genetic differences between TULV clades are homogenously distributed in the genomes and mostly synonymous (93.1%), except for a cluster of nonsynonymous changes in the 5' region of the viral envelope glycoprotein gene, potentially involved in host-driven isolation. Evolutionary relationships between TULV clades indicate an emergence of these viruses through rapid differential adaptation to the previously diverged host lineages that resulted in levels of ecological isolation exceeding the progress of speciation in their vertebrate hosts.


Assuntos
Arvicolinae/virologia , Especiação Genética , Genoma , Infecções por Hantavirus/veterinária , Interações Hospedeiro-Patógeno/genética , Orthohantavírus/genética , Animais , Arvicolinae/classificação , Arvicolinae/genética , Europa (Continente)/epidemiologia , Fluxo Gênico , Orthohantavírus/classificação , Orthohantavírus/patogenicidade , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/virologia , Hibridização Genética , Filogenia , Isolamento Reprodutivo , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia
12.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791508

RESUMO

The AndesOrthohantavirus (ANDV), which causes the hantavirus cardiopulmonary syndrome, enters cells via integrins, and a change from leucine to proline at residue 33 in the PSI domain (L33P), impairs ANDV recognition. We assessed the association between this human polymorphism and ANDV infection. We defined susceptible and protective genotypes as "TT" (coding leucine) and "CC" (coding proline), respectively. TT was present at a rate of 89.2% (66/74) among the first cohort of ANDV cases and at 60% (63/105) among exposed close-household contacts, who remained uninfected (p < 0.05). The protective genotype (CC) was absent in all 85 ANDV cases, in both cohorts, and was present at 11.4% of the exposed close-household contacts who remained uninfected. Logistic regression modeling for risk of infection had an OR of 6.2⁻12.6 (p < 0.05) in the presence of TT and well-known ANDV risk activities. Moreover, an OR of 7.3 was obtained when the TT condition was analyzed for two groups exposed to the same environmental risk. Host genetic background was found to have an important role in ANDV infection susceptibility, in the studied population.


Assuntos
Predisposição Genética para Doença , Infecções por Hantavirus/genética , Integrina alfaVbeta3/genética , Orthohantavírus , Polimorfismo de Nucleotídeo Único , Adulto , Características da Família , Feminino , Genótipo , Humanos , Leucina/genética , Masculino , Prolina/genética , Estudos Prospectivos , Medição de Risco , Fatores de Risco
13.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541836

RESUMO

The hantavirus RNA-dependent RNA polymerase (RdRp) snatches 5' capped mRNA fragments from the host cell transcripts and uses them as primers to initiate transcription and replication of the viral genome in the cytoplasm of infected cells. Hantavirus nucleocapsid protein (N protein) binds to the 5' caps of host cell mRNA and protects them from the attack of cellular decapping machinery. N protein rescues long capped mRNA fragments in cellular P bodies that are later processed by an unknown mechanism to generate 10- to 14-nucleotide-long capped RNA primers with a 3' G residue. Hantavirus RdRp has an N-terminal endonuclease domain and a C-terminal uncharacterized domain that harbors a binding site for the N protein. The purified endonuclease domain of RdRp nonspecifically degraded RNA in vitro It is puzzling how such nonspecific endonuclease activity generates primers of appropriate length and specificity during cap snatching. We fused the N-terminal endonuclease domain with the C-terminal uncharacterized domain of the RdRp. The resulting NC mutant, with the assistance of N protein, generated capped primers of appropriate length and specificity from a test mRNA in cells. Bacterially expressed and purified NC mutant and N protein required further incubation with the lysates of human umbilical vein endothelial cells (HUVECs) for the specific endonucleolytic cleavage of a test mRNA to generate capped primers of appropriate length and defined 3' terminus in vitro Our results suggest that an unknown host cell factor facilitates the interaction between N protein and NC mutant and brings the N protein-bound capped RNA fragments in close proximity to the endonuclease domain of the RdRp for specific cleavage at a precise length from the 5' cap. These studies provide critical insights into the cap-snatching mechanism of cytoplasmic viruses and have revealed potential new targets for their therapeutic intervention.IMPORTANCE Humans acquire hantavirus infection by the inhalation of aerosolized excreta of infected rodent hosts. Hantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with mortality rates of 15% and 50%, respectively (1). Annually 150,000 to 200,000 cases of hantavirus infections are reported worldwide, for which there is no treatment at present. Cap snatching is an early event in the initiation of virus replication in infected hosts. Interruption in cap snatching will inhibit virus replication and will likely improve the prognosis of the hantavirus disease. Our studies provide mechanistic insight into the cap-snatching mechanism and demonstrate the requirement of a host cell factor for successful cap snatching. Identification of this host cell factor will reveal a novel therapeutic target for combating this viral illness.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , Orthohantavírus/genética , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , Linhagem Celular , Células Endoteliais , Genoma Viral/genética , Infecções por Hantavirus/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA/genética , RNA Mensageiro/genética , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/genética , Replicação Viral/genética
14.
Emerg Infect Dis ; 23(1): 158-160, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983939

RESUMO

Little is known about the presence of human pathogenic Puumala virus (PUUV) in Lithuania. We detected this virus in bank voles (Myodes glareolus) in a region of this country in which previously PUUV-seropositive humans were identified. Our results are consistent with heterogeneous distributions of PUUV in other countries in Europe.


Assuntos
Arvicolinae/virologia , Citocromos b/genética , Reservatórios de Doenças/veterinária , Infecções por Hantavirus/veterinária , Proteínas do Nucleocapsídeo/genética , Filogenia , Virus Puumala/genética , Animais , Arvicolinae/classificação , Arvicolinae/genética , Reservatórios de Doenças/virologia , Monitoramento Epidemiológico/veterinária , Técnicas de Genotipagem , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/genética , Infecções por Hantavirus/virologia , Humanos , Lituânia/epidemiologia , Filogeografia , Virus Puumala/classificação
16.
Virus Genes ; 53(2): 307-311, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27858312

RESUMO

A novel mammalian orthoreovirus (MRV) strain was isolated from the lung tissue of a common vole (Microtus arvalis) with Tula hantavirus infection. Seven segments (L1-L3, M2-M3, S2, and S4) of the Hungarian MRV isolate MORV/47Ma/06 revealed a high similarity with an MRV strain detected in bank vole (Myodes glareolus) in Germany. The M1 and S3 segment of the Hungarian isolate showed the closest relationship with the sequence of a Slovenian human and a French murine isolate, respectively. The highest nucleotide and amino acid identity values were above 90 and 95% in all of the comparisons to the reference sequences in GenBank, except for the S1 with a maximum of 69.6% nucleotide and 75.4% amino acid identity. As wild rodents are among the main sources of zoonotic infections, the reservoir role of these animals and zoonotic potential of rodent origin MRVs need to be further investigated.


Assuntos
Infecções por Hantavirus/genética , Filogenia , Vírus Reordenados/genética , Animais , Arvicolinae/genética , Arvicolinae/virologia , Orthohantavírus/genética , Infecções por Hantavirus/virologia , Humanos , Dados de Sequência Molecular , Vírus Reordenados/classificação , Vírus Reordenados/patogenicidade
17.
PLoS One ; 10(11): e0142872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26561052

RESUMO

INTRODUCTION: Hantavirus infections are characterized by both activation and dysfunction of the endothelial cells. The underlying mechanisms of the disease pathogenesis are not fully understood. Here we tested the hypothesis whether the polymorphisms of endothelial nitric oxide synthase, eNOS G894T, and inducible nitric oxide synthase, iNOS G2087A, are associated with the severity of acute Puumala hantavirus (PUUV) infection. PATIENTS AND METHODS: Hospitalized patients (n = 172) with serologically verified PUUV infection were examined. Clinical and laboratory variables reflecting disease severity were determined. The polymorphisms of eNOS G894T (Glu298Asp, rs1799983) and iNOS G2087A (Ser608Leu, rs2297518) were genotyped. RESULTS: The rare eNOS G894T genotype was associated with the severity of acute kidney injury (AKI). The non-carriers of G-allele (TT-homozygotes) had higher maximum level of serum creatinine than the carriers of G-allele (GT-heterozygotes and GG-homozygotes; median 326, range 102-1041 vs. median 175, range 51-1499 µmol/l; p = 0.018, respectively). The length of hospital stay was longer in the non-carriers of G-allele than in G-allele carriers (median 8, range 3-14 vs. median 6, range 2-15 days; p = 0.032). The rare A-allele carriers (i.e. AA-homozygotes and GA-heterozygotes) of iNOS G2087A had lower minimum systolic and diastolic blood pressure than the non-carriers of A-allele (median 110, range 74-170 vs.116, range 86-162 mmHg, p = 0.019, and median 68, range 40-90 vs. 72, range 48-100 mmHg; p = 0.003, respectively). CONCLUSIONS: Patients with the TT-homozygous genotype of eNOS G894T had more severe PUUV-induced AKI than the other genotypes. The eNOS G894T polymorphism may play role in the endothelial dysfunction observed during acute PUUV infection.


Assuntos
Infecções por Hantavirus/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Alelos , Endotélio Vascular/patologia , Feminino , Genótipo , Infecções por Hantavirus/fisiopatologia , Heterozigoto , Homozigoto , Hospitalização , Humanos , Nefropatias/genética , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/genética , Polimorfismo Genético , Estudos Prospectivos , Virus Puumala , Adulto Jovem
18.
Clin Infect Dis ; 61(12): e62-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26394672

RESUMO

BACKGROUND: Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). METHODS: A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. RESULTS: Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). CONCLUSIONS: The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis.


Assuntos
Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Interleucinas/genética , Orthohantavírus/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Chile , Feminino , Estudos de Associação Genética , Técnicas de Genotipagem , Infecções por Hantavirus/imunologia , Humanos , Lactente , Recém-Nascido , Interferons , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
J Exp Med ; 211(7): 1485-97, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24889201

RESUMO

Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from ß2 null mice identified ß2 integrin receptors as a master switch for NET induction. Further experiments suggested that ß2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with ß2 integrin induced strong NET formation. Collectively, ß2 integrin-mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage.


Assuntos
Antígenos CD18/imunologia , Infecções por Hantavirus/imunologia , Neutrófilos/imunologia , Orthohantavírus/imunologia , Adenoviridae , Animais , Autoanticorpos/genética , Autoanticorpos/imunologia , Antígenos CD18/genética , Células CHO , Cricetinae , Cricetulus , Feminino , Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Humanos , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Nefropatias/genética , Nefropatias/imunologia , Nefropatias/patologia , Nefropatias/virologia , Pneumopatias/genética , Pneumopatias/imunologia , Pneumopatias/patologia , Pneumopatias/virologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Masculino , Camundongos , Camundongos Mutantes , Neutrófilos/patologia
20.
Viruses ; 6(5): 2214-41, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24859344

RESUMO

We reviewed the associations of immunity-related genes with susceptibility of humans and rodents to hantaviruses, and with severity of hantaviral diseases in humans. Several class I and class II HLA haplotypes were linked with severe or benign hantavirus infections, and these haplotypes varied among localities and hantaviruses. The polymorphism of other immunity-related genes including the C4A gene and a high-producing genotype of TNF gene associated with severe PUUV infection. Additional genes that may contribute to disease or to PUUV infection severity include non-carriage of the interleukin-1 receptor antagonist (IL-1RA) allele 2 and IL-1ß (-511) allele 2, polymorphisms of plasminogen activator inhibitor (PAI-1) and platelet GP1a. In addition, immunogenetic studies have been conducted to identify mechanisms that could be linked with the persistence/clearance of hantaviruses in reservoirs. Persistence was associated during experimental infections with an upregulation of anti-inflammatory responses. Using natural rodent population samples, polymorphisms and/or expression levels of several genes have been analyzed. These genes were selected based on the literature of rodent or human/hantavirus interactions (some Mhc class II genes, Tnf promoter, and genes encoding the proteins TLR4, TLR7, Mx2 and ß3 integrin). The comparison of genetic differentiation estimated between bank vole populations sampled over Europe, at neutral and candidate genes, has allowed to evidence signatures of selection for Tnf, Mx2 and the Drb Mhc class II genes. Altogether, these results corroborated the hypothesis of an evolution of tolerance strategies in rodents. We finally discuss the importance of these results from the medical and epidemiological perspectives.


Assuntos
Suscetibilidade a Doenças , Infecções por Hantavirus/imunologia , Infecções por Hantavirus/veterinária , Orthohantavírus/imunologia , Polimorfismo Genético , Doenças dos Roedores/imunologia , Animais , Citocinas/genética , Europa (Continente) , Infecções por Hantavirus/genética , Infecções por Hantavirus/virologia , Humanos , Imunogenética , Receptores Imunológicos/genética , Doenças dos Roedores/genética , Doenças dos Roedores/virologia , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA