Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Rep ; 42(12): 113581, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38103201

RESUMO

Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1ß and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1ß to generate a 27-kDa fragment that deactivates IL-1ß signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1ß recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.


Assuntos
Caspases , Interleucina-18 , Interleucina-1beta , Caspases/genética , Caspases/imunologia , Interleucina-18/química , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/química , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Células RAW 264.7 , Células HEK293 , Células HeLa , Células THP-1 , Humanos , Inflamassomos/imunologia , Transdução de Sinais/genética , Proteólise , Ligação Proteica , Multimerização Proteica , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia
2.
Gut Microbes ; 13(1): 1986665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696686

RESUMO

Non-typhoidal Salmonella (NTS) infections result in self limiting gastroenteritis except in rare cases wherein manifestations of chronic infections can occur. Strategies employed by Salmonella to thrive in hostile environments of host during chronic infections are complex and multifaceted. In chronic state, a coordinated action of bacterial effectors allows reprogramming of macrophages to M2 subtype and thereby creating a permissible replicative niche. The mechanistic details of these processes are not fully known. In the current study we identified, histone H3-lysine 27 trimethylation (H3K27me3)-specific demethylase, KDM6B to be upregulated in both cell culture and in murine model of Salmonella infection. KDM6B recruitment upon infection exhibited an associated loss of overall H3K27me3 in host cells and was Salmonella SPI1 effectors coordinated. ChIP-qRT-PCR array analysis revealed several new gene promoter targets of KDM6B demethylase activity including PPARδ, a crucial regulator of fatty acid oxidation pathway and Salmonella-persistent infections. Furthermore, pharmacological inhibition of KDM6B demethylase activity with GSKJ4 in chronic Salmonella infection mice model led to a significant reduction in pathogen load and M2 macrophage polarization in peripheral lymphoid organs. The following work thus reveals Salmonella effector-mediated epigenetic reprogramming of macrophages responsible for its long-term survival and chronic carriage.


Assuntos
Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Infecções por Salmonella/enzimologia , Salmonella typhimurium/fisiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , PPAR delta/genética , PPAR delta/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Regulação para Cima
3.
Front Immunol ; 12: 739938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552598

RESUMO

Global increases in the prevalence of antimicrobial resistance highlight the urgent need for novel strategies to combat infectious diseases. Recent studies suggest that host metabolic pathways play a key role in host control of intracellular bacterial pathogens. In this study we explored the potential of targeting host metabolic pathways for innovative host-directed therapy (HDT) against intracellular bacterial infections. Through gene expression profiling in human macrophages, pyruvate metabolism was identified as potential key pathway involved in Salmonella enterica serovar Typhimurium (Stm) infections. Next, the effect of targeting pyruvate dehydrogenase kinases (PDKs) - which are regulators of the metabolic checkpoint pyruvate dehydrogenase complex (PDC) - on macrophage function and bacterial control was studied. Chemical inhibition of PDKs by dichloroacetate (DCA) induced PDC activation and was accompanied with metabolic rewiring in classically activated macrophages (M1) but not in alternatively activated macrophages (M2), suggesting cell-type specific effects of dichloroacetate on host metabolism. Furthermore, DCA treatment had minor impact on cytokine and chemokine secretion on top of infection, but induced significant ROS production by M1 and M2. DCA markedly and rapidly reduced intracellular survival of Stm, but interestingly not Mycobacterium tuberculosis, in human macrophages in a host-directed manner. In conclusion, DCA represents a promising novel HDT compound targeting pyruvate metabolism for the treatment of Stm infections.


Assuntos
Antibacterianos/farmacologia , Ácido Dicloroacético/farmacologia , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/patogenicidade , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Ativação de Macrófagos , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Fenótipo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia
4.
Basic Clin Pharmacol Toxicol ; 128(2): 241-255, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32955161

RESUMO

Baicalin has been reported to protect mice against Salmonella typhimurium (S. typhimurium) infection, while its molecular mechanisms are unclear. In this study, multiplicity of infection (MOI) and observation time were measured. Cell viability and LDH levels were examined in RAW264.7 cells and H9 cells. RAW264.7 cells were stimulated with S typhimurium in the presence or absence of Baicalin, and the levels of pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The changes in reactive oxygen species (ROS) production were determined by fluorescence microscopy and ELISA. The autophagy and TLR4/MAPK/NF-κB signalling pathway were examined by immunofluorescence microscopy, quantitative reverse transcription-polymerase chain reaction and Western blotting. The results indicated that MOI of 30 and duration of autophagy evident at 5 h were applicable to this study. Baicalin prevented death of macrophages, promoted bactericidal activity, decreased the levels of pro-inflammatory cytokines and ROS and reduced the changes of key biomarkers in autophagy and TLR4/MAPK/NF-κB signalling pathway infected by S typhimurium. TLR4-overexpressed cells, autophagy and TLR4/MAPK/NF-κB signalling pathway were activated by S typhimurium, which was suppressed by Baicalin. Our findings indicated that Baicalin exerts anti-inflammatory and cell-protective effects, and it mediates autophagy by down-regulating the activity of TLR4 infected by S typhimurium.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Flavonoides/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/patogenicidade , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Células-Tronco Embrionárias Humanas/enzimologia , Células-Tronco Embrionárias Humanas/microbiologia , Células-Tronco Embrionárias Humanas/patologia , Humanos , Inflamação/enzimologia , Inflamação/microbiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , NF-kappa B/genética , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/enzimologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética
5.
PLoS Pathog ; 16(4): e1008498, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282854

RESUMO

We investigated the role of the inflammasome effector caspases-1 and -11 during Salmonella enterica serovar Typhimurium infection of murine intestinal epithelial cells (IECs). Salmonella burdens were significantly greater in the intestines of caspase-1/11 deficient (Casp1/11-/-), Casp1-/- and Casp11-/- mice, as compared to wildtype mice. To determine if this reflected IEC-intrinsic inflammasomes, enteroid monolayers were derived and infected with Salmonella. Casp11-/- and wildtype monolayers responded similarly, whereas Casp1-/- and Casp1/11-/- monolayers carried significantly increased intracellular burdens, concomitant with marked decreases in IEC shedding and death. Pretreatment with IFN-γ to mimic inflammation increased caspase-11 levels and IEC death, and reduced Salmonella burdens in Casp1-/- monolayers, while high intracellular burdens and limited cell shedding persisted in Casp1/11-/- monolayers. Thus caspase-1 regulates inflammasome responses in IECs at baseline, while proinflammatory activation of IECs reveals a compensatory role for caspase-11. These results demonstrate the importance of IEC-intrinsic canonical and non-canonical inflammasomes in host defense against Salmonella.


Assuntos
Caspase 1/imunologia , Caspases Iniciadoras/imunologia , Inflamassomos/imunologia , Intestinos/enzimologia , Intestinos/imunologia , Infecções por Salmonella/enzimologia , Salmonella typhimurium/imunologia , Animais , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Imunidade nas Mucosas , Inflamassomos/metabolismo , Interferon gama/imunologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/imunologia , Salmonella typhimurium/patogenicidade
6.
Cell Host Microbe ; 24(4): 500-513.e5, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308156

RESUMO

Sepsis is a life-threatening inflammatory syndrome accompanying a bloodstream infection. Frequently secondary to pathogenic bacterial infections, sepsis remains difficult to treat as a singular disease mechanism. We compared the pathogenesis of murine sepsis experimentally elicited by five bacterial pathogens and report similarities among host responses to Gram-negative Salmonella and E. coli. We observed that a host protective mechanism involving de-toxification of lipopolysaccharide by circulating alkaline phosphatase (AP) isozymes was incapacitated during sepsis caused by Salmonella or E. coli through activation of host Toll-like receptor 4, which triggered Neu1 and Neu3 neuraminidase induction. Elevated neuraminidase activity accelerated the molecular aging and clearance of AP isozymes, thereby intensifying disease. Mice deficient in the sialyltransferase ST3Gal6 displayed increased disease severity, while deficiency of the endocytic lectin hepatic Ashwell-Morell receptor was protective. AP augmentation or neuraminidase inhibition diminished inflammation and promoted host survival. This study illuminates distinct routes of sepsis pathogenesis, which may inform therapeutic development.


Assuntos
Fosfatase Alcalina/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/metabolismo , Neuraminidase/metabolismo , Infecções por Salmonella/microbiologia , Sepse/microbiologia , Fosfatase Alcalina/genética , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/patologia , Humanos , Inflamação/sangue , Inflamação/enzimologia , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Neuraminidase/genética , Infecções por Salmonella/sangue , Infecções por Salmonella/enzimologia , Infecções por Salmonella/patologia , Salmonella typhimurium/patogenicidade , Sepse/sangue , Sepse/enzimologia , Sepse/patologia , Receptor 4 Toll-Like/efeitos dos fármacos
7.
Nat Commun ; 9(1): 358, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367740

RESUMO

Antibiotic resistance poses rapidly increasing global problems in combatting multidrug-resistant (MDR) infectious diseases like MDR tuberculosis, prompting for novel approaches including host-directed therapies (HDT). Intracellular pathogens like Salmonellae and Mycobacterium tuberculosis (Mtb) exploit host pathways to survive. Only very few HDT compounds targeting host pathways are currently known. In a library of pharmacologically active compounds (LOPAC)-based drug-repurposing screen, we identify multiple compounds, which target receptor tyrosine kinases (RTKs) and inhibit intracellular Mtb and Salmonellae more potently than currently known HDT compounds. By developing a data-driven in silico model based on confirmed targets from public databases, we successfully predict additional efficacious HDT compounds. These compounds target host RTK signaling and inhibit intracellular (MDR) Mtb. A complementary human kinome siRNA screen independently confirms the role of RTK signaling and kinases (BLK, ABL1, and NTRK1) in host control of Mtb. These approaches validate RTK signaling as a drugable host pathway for HDT against intracellular bacteria.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Infecções por Salmonella/enzimologia , Salmonella typhimurium/efeitos dos fármacos , Tuberculose/enzimologia , Linhagem Celular , Biologia Computacional , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tuberculose/genética , Tuberculose/microbiologia
8.
Mol Cell Biochem ; 444(1-2): 125-141, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29196970

RESUMO

The endocannabinoids (eCBs) are endogenous arachidonoyl-containing lipid mediators with important roles in host defense. Macrophages are first-line defenders of the innate immune system and biosynthesize large amounts of eCBs when activated. The cellular levels of eCBs are controlled by the activities of their biosynthetic enzymes and catabolic enzymes, which include members of the serine hydrolase (SH) superfamily. The physiologic activity of SHs can be assessed in a class-specific way using chemoproteomic activity-based protein profiling (ABPP) methods. Here, we have examined avian (chicken) HD11 macrophages, a widely used cell line in host-pathogen research, using gel-based ABPP and ABPP-multidimensional protein identification technology (MudPIT) to profile the changes in SH activities under baseline, chemical-inhibitor-treated, and pathogen-challenged conditions. We identified α/ß-hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH) as the principal SHs responsible for 2-arachidonoylglycerol (2AG) hydrolysis, thereby regulating the concentration of this lipid in HD11 cells. We further discovered that infection of HD11 macrophages by Salmonella Typhimurium caused the activities of these 2AG hydrolases to be downregulated in the host cells. ABHD6 and FAAH were potently inhibited by a variety of small-molecule inhibitors in intact live cells, and thus these compounds might be useful host-directed adjuvants to combat antimicrobial resistance in agriculture. 2AG was further shown to augment the phagocytic function of HD11 macrophages, which suggests that pathogen-induced downregulation of enzymes controlling 2AG hydrolytic activity might be a physiological mechanism to increase 2AG levels, thus enhancing phagocytosis. Together these results define ABHD6 and FAAH as 2AG hydrolases in avian macrophages that can be inactivated pharmacologically and decreased in activity during Salmonella Typhimurium infection.


Assuntos
Amidoidrolases/antagonistas & inibidores , Proteínas Aviárias/antagonistas & inibidores , Galinhas/metabolismo , Inibidores Enzimáticos/farmacologia , Macrófagos/enzimologia , Monoacilglicerol Lipases/antagonistas & inibidores , Infecções por Salmonella/enzimologia , Salmonella typhimurium/metabolismo , Amidoidrolases/metabolismo , Animais , Proteínas Aviárias/metabolismo , Galinhas/microbiologia , Endocanabinoides/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Monoacilglicerol Lipases/metabolismo , Infecções por Salmonella/patologia
9.
Nat Commun ; 8: 14004, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084320

RESUMO

The hallmark of Salmonella Typhimurium infection is an acute intestinal inflammatory response, which is mediated through the action of secreted bacterial effector proteins. The pro-inflammatory Salmonella effector SopA is a HECT-like E3 ligase, which was previously proposed to activate host RING ligases TRIM56 and TRIM65. Here we elucidate an inhibitory mechanism of TRIM56 and TRIM65 targeting by SopA. We present the crystal structure of SopA in complex with the RING domain of human TRIM56, revealing the atomic details of their interaction and the basis for SopA selectivity towards TRIM56 and TRIM65. Structure-guided biochemical analysis shows that SopA inhibits TRIM56 E3 ligase activity by occluding the E2-interacting surface of TRIM56. We further demonstrate that SopA ubiquitinates TRIM56 and TRIM65, resulting in their proteasomal degradation during infection. Our results provide the basis for how a bacterial HECT ligase blocks host RING ligases and exemplifies the multivalent power of bacterial effectors during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Salmonella/enzimologia , Salmonella typhimurium/enzimologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Proteólise , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/química , Salmonella typhimurium/genética , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
10.
Cell Microbiol ; 18(10): 1374-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26866925

RESUMO

Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.


Assuntos
Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Infecções por Salmonella/enzimologia , Salmonella typhimurium/imunologia , Animais , Indução Enzimática , Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Inata , Ferro/metabolismo , Camundongos , Viabilidade Microbiana , NF-kappa B/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/microbiologia
11.
Cell Host Microbe ; 19(2): 216-26, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26867180

RESUMO

Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it.


Assuntos
Infecções por Salmonella/enzimologia , Salmonella typhi/fisiologia , Salmonella typhimurium/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Proteólise , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhi/enzimologia , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência , Proteínas rab de Ligação ao GTP/genética
12.
Oncotarget ; 7(1): 374-85, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26517244

RESUMO

Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments.


Assuntos
Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Neoplasias Experimentais/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Western Blotting , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/microbiologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/imunologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Salmonella/fisiologia , Infecções por Salmonella/enzimologia , Infecções por Salmonella/microbiologia , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
13.
Gastroenterology ; 149(7): 1849-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261005

RESUMO

BACKGROUND & AIMS: Dual oxidase 2 (DUOX2), a hydrogen-peroxide generator at the apical membrane of gastrointestinal epithelia, is up-regulated in patients with inflammatory bowel disease (IBD) before the onset of inflammation, but little is known about its effects. We investigated the role of DUOX2 in maintaining mucosal immune homeostasis in mice. METHODS: We analyzed the regulation of DUOX2 in intestinal tissues of germ-free vs conventional mice, mice given antibiotics or colonized with only segmented filamentous bacteria, mice associated with human microbiota, and mice with deficiencies in interleukin (IL) 23 and IL22 signaling. We performed 16S ribosomal RNA gene quantitative polymerase chain reaction of intestinal mucosa and mesenteric lymph nodes of Duoxa(-/-) mice that lack functional DUOX enzymes. Genes differentially expressed in Duoxa(-/-) mice compared with co-housed wild-type littermates were correlated with gene expression changes in early-stage IBD using gene set enrichment analysis. RESULTS: Colonization of mice with segmented filamentous bacteria up-regulated intestinal expression of DUOX2. DUOX2 regulated redox signaling within mucosa-associated microbes and restricted bacterial access to lymphatic tissues of the mice, thereby reducing microbiota-induced immune responses. Induction of Duox2 transcription by microbial colonization did not require the mucosal cytokines IL17 or IL22, although IL22 increased expression of Duox2. Dysbiotic, but not healthy human microbiota, activated a DUOX2 response in recipient germ-free mice that corresponded to abnormal colonization of the mucosa with distinct populations of microbes. In Duoxa(-/-) mice, abnormalities in ileal mucosal gene expression at homeostasis recapitulated those in patients with mucosal dysbiosis. CONCLUSIONS: DUOX2 regulates interactions between the intestinal microbiota and the mucosa to maintain immune homeostasis in mice. Mucosal dysbiosis leads to increased expression of DUOX2, which might be a marker of perturbed mucosal homeostasis in patients with early-stage IBD.


Assuntos
Bactérias/patogenicidade , Disbiose , Células Epiteliais/microbiologia , Gastroenterite/microbiologia , Imunidade nas Mucosas , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , NADPH Oxidases/biossíntese , NADPH Oxidases/metabolismo , Infecções por Salmonella/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/imunologia , Translocação Bacteriana , Modelos Animais de Doenças , Oxidases Duais , Indução Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Fezes/microbiologia , Feminino , Gastroenterite/enzimologia , Gastroenterite/genética , Gastroenterite/imunologia , Interações Hospedeiro-Patógeno , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/imunologia , Interleucinas/deficiência , Interleucinas/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Permeabilidade , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Ribotipagem , Infecções por Salmonella/enzimologia , Infecções por Salmonella/genética , Infecções por Salmonella/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais , Técnicas de Cultura de Tecidos , Transcrição Gênica , Interleucina 22
14.
mBio ; 6(1)2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25670778

RESUMO

UNLABELLED: To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. IMPORTANCE: To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP family in Salmonella invasion. Surprisingly, we found that Arf1 and Arf6 GAPs cooperate with their Arf GEF counterparts to facilitate cycles of Arf GTPase activation and inactivation, which direct pathogen invasion. This report illustrates that GAP proteins promote actin-dependent processes and are not necessarily restricted to negatively regulating cellular signaling. It uncovers a remarkable interplay between Arf GEFs and GAPs that is exploited by Salmonella to establish infection and expands our understanding of Arf GTPase-regulated cytoskeleton remodeling.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Família Multigênica , Infecções por Salmonella/enzimologia , Salmonella typhimurium/fisiologia , Citoesqueleto/enzimologia , Citoesqueleto/microbiologia , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética
15.
Cell Host Microbe ; 16(2): 153-155, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121744

RESUMO

Two reports in this issue of Cell Host & Microbe (Sellin et al., 2014; Knodler et al., 2014) establish the cell-intrinsic inflammasome-induced extrusion of infected enterocytes as a general defense mechanism against acute bacterial infections.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Enterócitos/microbiologia , Infecções por Escherichia coli/enzimologia , Inflamassomos/fisiologia , Proteína Inibidora de Apoptose Neuronal/fisiologia , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Humanos
16.
Cell Host Microbe ; 16(2): 249-256, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121752

RESUMO

Inflammasome-mediated host defenses have been extensively studied in innate immune cells. Whether inflammasomes function for innate defense in intestinal epithelial cells, which represent the first line of defense against enteric pathogens, remains unknown. We observed enhanced Salmonella enterica serovar Typhimurium colonization in the intestinal epithelium of caspase-11-deficient mice, but not at systemic sites. In polarized epithelial monolayers, siRNA-mediated depletion of caspase-4, a human ortholog of caspase-11, also led to increased bacterial colonization. Decreased rates of pyroptotic cell death, a host defense mechanism that extrudes S. Typhimurium-infected cells from the polarized epithelium, accounted for increased pathogen burdens. The caspase-4 inflammasome also governs activation of the proinflammatory cytokine, interleukin (IL)-18, in response to intracellular (S. Typhimurium) and extracellular (enteropathogenic Escherichia coli) enteric pathogens, via intracellular LPS sensing. Therefore, an epithelial cell-intrinsic noncanonical inflammasome plays a critical role in antimicrobial defense at the intestinal mucosal surface.


Assuntos
Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Inflamassomos/fisiologia , Infecções por Salmonella/enzimologia , Animais , Linhagem Celular Tumoral , Escherichia coli Enteropatogênica/imunologia , Ativação Enzimática , Infecções por Escherichia coli/imunologia , Gastroenterite/enzimologia , Gastroenterite/microbiologia , Humanos , Interleucina-18/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia
17.
Cell Microbiol ; 16(9): 1321-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24957519

RESUMO

Salmonella enterica is a foodborne intracellular pathogen that can invade intestinal epithelial cells and survive in macrophages of susceptible hosts. Although belonging to the same species, individual Salmonella enterica serovars behave as very different pathogens. Indeed, they can cause very different diseases (from mild gastroenteritis to deadly systemic diseases) and have distinctive host selectivity. Salmonella enterica serovars Typhi (S. Typhi) is a unique serovar that has evolved to infect only humans and cause typhoid fever, a life-threatening systemic disease killing more than 200,000 people every year. The mechanisms that make S. Typhi able to infect only humans are mostly unknown. Recently, an antimicrobial traffic pathway dependent on the Rab GTPase Rab32 and its exchange factor BLOC-3 was found to be critical to kill S. Typhi in macrophages from non-susceptible hosts, suggesting that this pathway delivers an antimicrobial factor to the S. Typhi vacuole. Here we discuss this finding in the light of the current knowledge of pathogen killing mechanisms.


Assuntos
Infecções por Salmonella/enzimologia , Salmonella typhi/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Humanos , Salmonella/fisiologia
18.
ACS Chem Biol ; 9(2): 414-22, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24274083

RESUMO

Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities-kinases and phosphatases-may be a new strategy to overcome infections by antibiotic-resistant bacteria.


Assuntos
Fosfatases de Especificidade Dupla/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/enzimologia , Salmonella typhimurium/fisiologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/genética , Salmonella typhimurium/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
19.
PLoS One ; 8(8): e71015, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990921

RESUMO

SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.


Assuntos
Interações Hospedeiro-Patógeno , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/enzimologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Androstadienos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Cromonas/farmacologia , Fibroblastos/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Camundongos , Morfolinas/farmacologia , Oligonucleotídeos/química , Fosforilação , Plasmídeos/metabolismo , Wortmanina
20.
J Immunol ; 190(4): 1631-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335748

RESUMO

Deficiency in Src homology region 2 domain-containing phosphatase 1/protein tyrosine phosphatase nonreceptor type 6 (SHP1/PTPN6) is linked with chronic inflammatory diseases and hematological malignancies in humans. In this study, we exploited the embryonic and larval stages of zebrafish (Danio rerio) as an animal model to study ptpn6 function in the sole context of innate immunity. We show that ptpn6 knockdown induces a spontaneous inflammation-associated phenotype at the late larval stage. Surprisingly, glucocorticoid treatment did not suppress inflammation under ptpn6 knockdown conditions but further enhanced leukocyte infiltration and proinflammatory gene expression. Experiments in a germ-free environment showed that the late larval phenotype was microbe independent. When ptpn6 knockdown embryos were challenged with Salmonella typhimurium or Mycobacterium marinum at earlier stages of development, the innate immune system was hyperactivated to a contraproductive level that impaired the control of these pathogenic bacteria. Transcriptome analysis demonstrated that Kyoto Encyclopedia of Genes and Genomes pathways related to pathogen recognition and cytokine signaling were significantly enriched under these conditions, suggesting that ptpn6 functions as a negative regulator that imposes a tight control over the level of innate immune response activation during infection. In contrast to the hyperinduction of proinflammatory cytokine genes under ptpn6 knockdown conditions, anti-inflammatory il10 expression was not hyperinduced. These results support that ptpn6 has a crucial regulatory function in preventing host-detrimental effects of inflammation and is essential for a successful defense mechanism against invading microbes.


Assuntos
Imunidade Inata/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Embrião não Mamífero , Imunofenotipagem , Modelos Animais , Infecções por Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA